A novel offloading framework for computation service in the Edge Cloud and the Core Cloud: A case study for face recognition

UIU Institutional Repository

    • Login
    View Item 
    •   UIU DSpace Home
    • School of Science and Engineering (SoSE)
    • Department of Computer Science and Engineering (CSE)
    • M.Sc Thesis/Project
    • View Item
    •   UIU DSpace Home
    • School of Science and Engineering (SoSE)
    • Department of Computer Science and Engineering (CSE)
    • M.Sc Thesis/Project
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel offloading framework for computation service in the Edge Cloud and the Core Cloud: A case study for face recognition

    Thumbnail
    View/Open
    Nasif-MSCSE-thesis.pdf (29.64Mb)
    Date
    2019-04-02
    Author
    Muslim, Nasif
    Metadata
    Show full item record
    Abstract
    A fast rate of progress has allowed the proliferation of smartphones and ease their extensive presence in people’s daily life. However, inadequate processing speed, and limited battery capacity have hindered improvements of the computational capabilities of the smartphone. Offloading computational tasks to the remote Cloud (Edge and Core) could solve this problem by enabling the user to access these services over the Internet. Edge Cloud computing has been recognized as an emerging field within the Cloud computing paradigm, where computation servers are situated at the edge of the Internet to reduce network delay and traffic. Nevertheless, offloading tasks to the remote Cloud is not always beneficial due to variable network conditions and added processing costs. In this thesis, a framework is proposed that provides smartphones with the ability to make offloading decisions to minimize processing time or cost, energy consumption or any combination of these three parameters. To validate the accuracy of the framework, face recognition is used as an application and is implemented in the remote Cloud infrastructures. Experimental results based on real-life and alternate scenarios demonstrate that the framework can make the correct offloading decision, in a cost effective way.
    URI
    http://dspace.uiu.ac.bd/handle/52243/961
    Collections
    • M.Sc Thesis/Project [151]

    Copyright 2003-2017 United International University
    Contact Us | Send Feedback
    Developed by UIU CITS
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright 2003-2017 United International University
    Contact Us | Send Feedback
    Developed by UIU CITS