PCA-ANN: Feature Selection based Hybrid Intrusion Detection System in Software Defined Network

UIU Institutional Repository

    • Login
    View Item 
    •   UIU DSpace Home
    • School of Science and Engineering (SoSE)
    • Department of Computer Science and Engineering (CSE)
    • M.Sc Thesis/Project
    • View Item
    •   UIU DSpace Home
    • School of Science and Engineering (SoSE)
    • Department of Computer Science and Engineering (CSE)
    • M.Sc Thesis/Project
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PCA-ANN: Feature Selection based Hybrid Intrusion Detection System in Software Defined Network

    Thumbnail
    View/Open
    IDS-SDN.pdf (2.153Mb)
    Date
    2023-07
    Author
    Nawshin, Sabila
    Metadata
    Show full item record
    Abstract
    The increasing complexity of modern networks and the rise of sophisticated cyber attacks has made the development of effective Intrusion Detection Systems (IDS) a critical need. Software De fined Networking (SDN) technology provides us with a programmable central controller, providing a central view of the whole network as opposed to the existing internet structure where each of the routers only has information about it's surrounding routers, which results in the systems and algorithms developed in it to operate in an distributed setting. The centralized view provided by SDN makes it an attractive platform for IDS deployment. The networks under SDN is, however, more vulnerable to malicious activities or attacks than the traditional network topology due to the same centralised nature. The recently published "inSDN" dataset was prepared specifically for intrusion detection in SDN. In this study, we have used this dataset to introduce a novel Intrusion Detection System (IDS) model that integrates Principal Component Analysis (PCA) - a feature selection methodology commonly used in traditional Machine Learning (ML) to extract the principal features from large datasets and reduce dimensionality - and Artificial Neural Networks (ANN) to classify network tra c based on the extracted features. The model achieved an accuracy of 99.95% for multi-class classifi cation. The results show that the proposed model outperforms the current state-of-the-art techniques in a much simpler settings and reduces the need for complex models that require extensive computation in the "inSDN" attack dataset.
    URI
    http://dspace.uiu.ac.bd/handle/52243/2829
    Collections
    • M.Sc Thesis/Project [151]

    Copyright 2003-2017 United International University
    Contact Us | Send Feedback
    Developed by UIU CITS
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright 2003-2017 United International University
    Contact Us | Send Feedback
    Developed by UIU CITS