Evaluation On Dhallywood Movies Based On Machine Learning

UIU Institutional Repository

    • Login
    View Item 
    •   UIU DSpace Home
    • School of Science and Engineering (SoSE)
    • Department of Computer Science and Engineering (CSE)
    • M.Sc Thesis/Project
    • View Item
    •   UIU DSpace Home
    • School of Science and Engineering (SoSE)
    • Department of Computer Science and Engineering (CSE)
    • M.Sc Thesis/Project
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation On Dhallywood Movies Based On Machine Learning

    Thumbnail
    View/Open
    Sharmin Akter-012181001.pdf (2.017Mb)
    Date
    2020-10-20
    Author
    Akter, Sharmin
    Metadata
    Show full item record
    Abstract
    The film is an exciting source of investment for passionate movie makers. The profitable nature of motion picture industry attracts movie creators to involve with it. In a such scenario, this is very important to evaluate movie status to find relevant features of a movie that make it successful. Machine learning is a popular trend for analyzing movie data. In our proposed research, we have tried to evaluate the status of Dhallywood movie based on three different class classifiers such as: Binary class (Hit-Yes, No), Triple class (Excellent, Good, Bad), and Four class (Excellent, Very Good, Good, Bad). The method of analyzing data has been described in details. Collection of Dhallywood movie data is the main challenge of this research work. The collected data have analyzed in a different way to set a target variable, which has improved the accuracy of models. The collected data have analyzed using five ML algorithms, and each algorithm applied three times for three different groups of class. Then the analytical results have compared to find out the best algorithm. From the comparative analysis it is found that accuracy of Triple class classification is higher than that of Binary and Four class classification. In addition to that among all applied algorithms, Random Forest provides the highest accuracy which is near about 85%. This research provides a new approach to set target variable classes based on Wikipedia data, news, actor actress biography, and viewer response on YouTube for a particular movie. We have selected this approach because the Dhallywood movie rating is not accurate on IMDb for all movies due to lack of budget and revenue data.
    URI
    http://dspace.uiu.ac.bd/handle/52243/1896
    Collections
    • M.Sc Thesis/Project [151]

    Copyright 2003-2017 United International University
    Contact Us | Send Feedback
    Developed by UIU CITS
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright 2003-2017 United International University
    Contact Us | Send Feedback
    Developed by UIU CITS