
A New Approach for Compressing Color Images using Neural Network

A. K. M. Ashikur Rahman and Chowdhury Mofizur Rahman
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
E-mail: ashikur@cs.ualberta.ca, cmr@cse.buet.edu

Abstract

In this paper a neural network based image compression method is presented. Neural networks
offer the potential for providing a novel solution to the problem of data compression by its ability
to generate an internal data representation. Our network, which is an application of counter
propagation network, accepts a large amount of image data, compresses it for storage or
transmission, and subsequently restores it when desired. A new approach for reducing training
time by reconstructing representative vectors has also been proposed. Performance of the
network has been evaluated using some standard real world images. It is shown that the
development architecture and training algorithm provide high compression ratio and low
distortion while maintaining the ability to generalize and is very robust as well.

1 Introduction

 The technology trends are opening up both a capability and a need for digital
continuous-tone color images. However the massive storage requirement for large numbers of
high quality images is a technical impediment to widespread use of images. They are
unsuitable to be transferred over slow communication line. The purpose of the image
compression is to represent images with less data in order to save storage costs or
transmission time and costs. However, the most effective compression is achieved by
approximating the original image (rather than reducing it exactly).

There has been a considerable amount of activity in the area of image compression
during the last thirty years [3, 4, 6]. An earlier approach to image compression is the run-
length compression technique which is very familiar to all. Some neural network based image
compression technique need to be mentioned here. Cottrel employed a two-layer neural
network using the standard back propagation training algorithm to obtain image compression
[1, 2]. However his method exploited only the correlation between pixel patches within each
of the training patches, therefore only limited amount of compression could be achieved.
Aran and Steven used multi-layer hierarchical network to compress image data [5]. They
proposed a new training algorithm called nested training algorithm to make the training
process faster. However they are also limited only to the back propagation technique. They
have worked only with the gray scale images and the compression ratio achieved using their
algorithm is 8:1.

In this paper we have proposed a new method by clustering the vectors onto limited
number of clusters based on compression requirement. We have used counter propagation
network, which we think would be the best for our application. Our compression technique is
not loss less, however we have proposed a compression technique with less amount of
distortion.

2 Methodology

In a truly uncompressed bitmap file (BMP file), the color information of an image is stored
pixel by pixel and their position in images is immaterial because they are stored in a
predetermined order. The color information of a pixel is basically defined by its three-color
quantities: red, green and blue quantity. By varying the contents of these three quantities

mailto:ashikur@cs.ualberta.ca
default
CIMCA 2003 Proceedings/ISBN 1740880684: M. Mohammadian (Ed.)
12-14 February 2003, Vienna - Austria

default
315

various pixels are formed. In a bitmap file 24 bits are allocated for storing each pixel’s color
information. Each color quantity is basically of 8 bits thereby needs 24 (3×8) bits in total.
Now 24 bits for a particular pixel means there are 224 (= 16 million) possible colors. During
compression we should allow lesser number of bits as much as possible to make compression
process effective. The problem is, if we allow lesser number of bits per pixel during
compression, then we may not be able to allow such huge number of colors like 16 million.
In that case we have to reduce the total color requirement and thereby we must prepare
ourselves to except some loss in the color information. As for example, if we allow 10 bits
per pixel during compression then we are basically allowing 210 (= 1024) colors only. Images
can always tolerate some amount of noises if they can be organized in a very tactful manner.

So we need to reduce total number of colors of an image to achieve compression
effectively. One way to achieve this objective is to group those pixels together, which are
exactly same or very close to each other with respect to their color information. If we need to
design an algorithm which will automatically cluster the similar pixels together then there
should be some precise underlying definition of similarity between colors.

2.1 Mathematical definition of similar pixels

The total 24 bits required to store the color information of a pixel are divided into
three equal 8 bits part. Each 8-bit quantity represents the red, green and blue quantity and
each quantity may vary from 0 to 255. Now if we interpret three color quantities as three
individual dimensions on a three-dimensional space then each pixel may be viewed as a
vector lying on a three-dimensional space. Figure 1 shows this diagrammatically.

Cluster 2

Cluster 3

R

θ1

θ2
V3

2
1

R

θ

Figure 1: Pixels on 3-D Figure 2: Three pixels are Figure 3

 space. mapped onto three vectors based o

Now let us consider about two pixels defined by their color con

on a three-dimensional space as shown in Figure 1 then they will co
vectors having an angle θ in between them. We can easily use this
similarities between colors. As for example let us consider three pixel
mapped onto three individual vectors V1, V2, V3 respectively as shown
θ1 > θ2. Then obviously the vector V2 is much closer to the vector V3
So pixel p2 will be much similar to the pixel p3 then to the pixel p1 with
content. In this way we can easily map each and every pixel of an im
dimensional space and try to find the similarities between them. The p
together based on their similarities and number of groups will dep
compression level. This phenomenon has been shown pictorially in Fig
of an image have been mapped on a three-dimensional space. One th
G

Cluster 1

Cluster 4
B
: Clusterin
n their vec

tent. If w
nstitute t
angle θ
s p1, p2, p
in Figure
then to th
 respect to

age onto
ixels will
end on t
ure 3. He
ing is cle
R

G

B

G

B

 V

V

g of pixels
tors

e map them
wo separate
for defining
3 which are

 2. Now, let
e vector V1.
 their color
 this three-

 be grouped
he required
re all pixels
arly evident

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
316

from the picture that although there are many pixels on an image, but all pixels of an image
may be grouped together into small number of groups. The ultimate quality of the image will
basically depend upon the total number of allowable groups. As for example if we allow only
a single group then all pixels are bound to fall upon this single group thereby degrading the
quality of the image. But if we allow more number of groups then obviously the overall
picture quality will be improved. In that case the space requirement will be increased. So
there is a trade- off between total number of groups and total space requirement and we must
find a balance in between the two. This issue is one of the major concerns of this paper and
will be explored experimentally.

2.2 Rough sketch of the overall procedure

The whole compression-decompression procedure may be executed in four major steps:

1. Clustering all the pixels into predetermined number of groups.
2. Producing a representative color for each group.
3. For each pixel storing only the cluster number during compression.
4. During decompression restoring the cluster number and storing the representative

color of that cluster.
In the subsequent subsections each of the five major steps are described in details.

2.3 Clustering process

For clustering purpose we have taken the help of neural network and we have found that
counter propagation network is best suited for our purpose. Counter propagation networks are
very popular because of its simplicity in calculations and strong power of generalization.
However other networks such as backpropagation network may also be used for clustering
purpose, but the major disadvantage of backpropagation network is its training time is higher
because of the complexity in its equations.
 For our purpose we have used the counter propagation network shown in Figure 4.
The total number of neurons in the input layer will be exactly three as each input is basically
a vector having three constituent parts (e.g., the red, green and blue quantity). For particular
pixel input the neuron I1 will accept the amount of red quantity, the neuron I2 will accept the

3

 X3

2

 G3

 I G
X1 w21 v12 X1

1

3

Desired
Output

 G 2 w31 X2

Kn

K3

Kohonen
Layer

K1

2

1

 v11 Grossberg
 Layer

Input w11
Layer

X

X

 w3n vn3

 Figure 4: The counter propagation network Figure 5: The first tw
 used for clustering counter pro
w31

o layers of t
pagation net
K1
I 3
I

I1
I2

I

K2

he
w

K2

o

K3
w11
w21

rk.

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
317

amount of green quantity, the neuron I3 will accept the amount of blue quantity.
The number of neurons in the Kohonen layer will vary based on the total number of

clusters we allow. If we allow 1024 clusters then there are exactly 1024 neurons and if we
allow 256 clusters then there are 256 neurons. Each of the neuron in the middle layer has
connecting weights for each of the neuron of the previous layer. As for example the first
neuron K1 of the middle layer has three connecting weights w11, w21, and w31 with the neuron
I1, I2, and I3 of the previous layer respectively. The connecting weights are doing all the tricks
for clustering the pixels into groups. They will be trained using real life images in
unsupervised mode. After training all the weights will be finally adjusted to a point on which
they can distinguish the similar pixels from the dissimilar pixels.

The neurons in the final layer are responsible for reproduction of the color
information of pixels. As there are three constituent parts of a pixel that is why there are
exactly three neurons in this layer. Each of the three neurons is connected by some weights to
each of the neurons of the previous layer. The connecting weights will be trained up in such a
way so that they can produce an average of all the colors within a group.
 The first two layers are shown separately in Figure 5. Let us consider that a new
image has been given as input for compression. We have to retrieve the pixel information one
after another and we will apply the color information of each pixel to our network. In the
following paragraph the clustering process for a particular pixel is described. This process
will be repeated for each pixel of the image.
 A particular pixel X has three constituent parts (e.g. the RGB values). Let the three
constituent parts be x1, x2 and x3. x1 is the amount of red quantity and will be applied to
neuron I1 of the first layer. x2 (the amount of green quantity) and x3 (the amount of blue
quantity) will be applied to neurons I2 and I3 respectively. After applying the input we have to
calculate the output of each neuron in the middle layer. For a particular neuron say K1 the
output calculation is as follows. The neuron K1 has three weights associated with it, firstly the
weight w11 between I1 and K1, secondly the eight w21 between I2 and K1, and finally the
weight w31 between I3 and K1. The output of neuron K1 is named as Net1 and will be
calculated by using the following equation:

……………………………………………….(1)
In this way each neuron of the middle layer has its own connecting weights and for each
neuron j of the middle layer we have to calculate its output Netj:

3312211111 xwxwxwNet ++=

…………………………………………….(2)
After calculating all the outputs of the neurons of the middle layer the neuron having
maximum output will be declared as the “winning neuron” for the current pixel. The current
pixel will be assigned to that neuron j for which the output is maximum. When a pixel having
the similar type of color information will be applied to the input layer, the same neuron is
going to fire (e.g., the same neuron’s output will be maximum and for a pixel with different
type a different neuron is going to be fired). In this way the clustering process will be fully
automated. The Algorithm 2.1 describes the overall procedure of clustering in brief.

332211 xjwxjwxjwjNet ++=

Algorithm 2.1:
1. for each pixel X = (x1, x2, x3) do:
2. Apply the constituent part of the color info. to respective neurons of input layer.
3. for j = 1 to n do:
4. Multiply input vector component with weight vector component and calculate
 the output using the following equation: jNET

 ∑=
i ijwixjNET

5. Assign the pixel on that group j for which the value of is maximum. NET
 j

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
318

2.4 Producing the representative color of each group

The final layer (also known as Grossberg layer) of the counter propagation network is
responsible for reproduction of the colors of the pixels. Truly speaking, the representative
color for a particular cluster will be the average of all the colors within the cluster. The
generation of representative color will take place at the time of clustering process. For a
particular pixel X at first we have to find the winning neuron on which the pixel falls. Only
the connecting weights between the winning neuron and the three neurons of the final layer
will be adjusted. The equation for weight adjustment is as follows:

 ……………………………………………………(3) ijV))(()()(oldjyoldijVnewijV −+= β
Where,
 Vij(new) = new weight between neuron i of the middle layer and neuron j of the final layer.
 Vij(old) = old weight between neuron i of the middle layer and neuron j of the final layer.

β = a scalar quantity.
yj = the j-th component of the input vector (remember that there are three constituent
 parts of an input pixel).

In Equation 3 actually the amount of the weight adjustment is proportional to the
difference between the weight and the desired output of the Grossberg neuron to which it
connects. In summery, the similar pixels will fire the same Kohonen neuron and the weights
connected to that firing neuron will be adjusted so that it gives an average color of those
similar color pixels. The network parameter β is actually a scalar quantity and its value is not
constant. We have to apply all the pixels of a particular image for several times until the
weights between the Kohonen and Grossberg layer converge. During this time the value of β
will be increased slowly. Initially its value should be very small say 0.1. Gradually this value
should be increased in small steps until a sufficient large value say 0.25. Thus it will help the
convergence process of the weights between the last two layers. One thing should be
mentioned here, although we are training the weights between the last two layers, during
normal operation of compression one might think that the process time could be longer.
Actually the weight convergence time of these weights is very small (about 20-30 seconds)
and one need not to be worried too much.

2.5 Compression process

The main problem of the clustering algorithm is, it is basically clustering on the basis of
angular distance of the color vectors ignoring the actual length of those color vectors.
Consider two pixels p1 (255, 255, 255) and p2 (4, 4, 4). After normalisation they will form two
vectors V1 (1/√3, 1/√3, 1/√3) and V2 (1/√3, 1/√3, 1/√3). So obviously they are going to fall on
the same clusters although actually these two pixels are having very dissimilar color
information. The second problem is, all constituent parts of a color vector are positive. So
every of them will fall on the 1st quadrant of a three-dimensional space leaving other
quadrants totally unused. As a result the distribution of the color vectors will be very dense
over the first quadrant whereas they might be distributed uniformly over the whole three-
dimensional space.
 To remove these problems, we have taken two necessary steps. At first we have
deducted 127 from each color value of each pixel. This will cause some constituent parts of
the color vector to become negative, thereby forcing some color vectors to fall on the other
quadrants of the three-dimensional space. As for example the previously considered two
pixels were p1 (255, 255, 255) and p2 (4, 4, 4). Now if we deduct 127 from each part of the

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
319

color information, the pixels will be transformed into p1(128, 128, 128) and p2(-123, -123, -
123). After normalisation they will form two vectors V1 (1/√3, 1/√3, 1/√3) and V2 (-1/√3, -
1/√3, -1/√3). Now they will fall on two different quadrant namely first and eighth quadrant.
So this time they will fall on two separate clusters and the average error will be drastically
reduced.
 To implement the above-mentioned procedure, a new problem now arises. The weight
vectors were trained up only for the first quadrant and not for the other quadrants. So this
needs a retraining of the weight vectors. But if we apply the following procedure then the
retraining procedure is no longer needed.
 To avoid the need for retraining, we may easily exploit the symmetrical property of a
sphere. At first let us consider a two-dimensional space. Suppose the weight vectors are
trained in the first quadrant and after training, these weight vectors are uniformly distributed
over the first quadrant.

Now we need some more weight vectors for the other quadrant. The circle is basically
symmetrical over its two axes. So we don’t need a further training. Instead, we can just
construct the four vectors in the second quadrant from the four vectors of the first quadrant
just by taking the negative of the x values of the each weight vectors of the first quadrant. We
can construct four other weight vectors in the third quadrant if we just take negative of the x
and y values of the weight vectors in the first quadrant. Again four other vectors may be
constructed in the fourth quadrant just taking the negative of the y values. Figure 6a- 6d
shows all these construction process.

 (a) (b) (c) (d)

),(yxW −

),(yxW −−

),(yxW −
),(yxW),(yxW),(yxW),(yxW

),(yxW −),(yxW −−
),(yxW −

Figure 6: (a) Constructing weight vectors for the second quadrant by taking negative of x values
 (b) Constructing weight vectors for the third quadrant by taking negative of x and y values.
 (c) Constructing weight vectors for the fourth quadrant by taking negative of y values.
 (d) Final construction of 16 weight vectors.

The basic idea is shown above in a two dimensional space. This idea may be easily
extended for the three dimensional space., because in a three dimensional space there will be
a sphere instead of circle and a sphere is also symmetrical about its three separate axes.
Before compression we need to extend our weight vectors. In a three-dimensional space there
will be eight quadrants. We have the weight vectors for only the first quadrant. In the first
quadrant all the values of x, y and z are positive. Say these weight vectors are of the form
W000 (x, y, z). Now let us extend these weight vectors for the second quadrant. In the second
quadrant, the value of x is negative and the values of y and z are positive. So in the second
quadrant the weight vectors will be constructed by using the following equation:

 W001 (x, y, z) = W000 (-x, y, z)……………………………………(4)
Similarly for other six quadrants the weight vectors will be:

W010 (x, y, z) = W000 (x,- y, z) ….……..….……………….………(5)
W100 (x, y, z) = W000 (x, y, -z) ….….…….……………….……….(6)
W011 (x, y, z) = W000 (-x, -y, z) ….……….……………………….(7)
W101 (x, y, z) = W000 (-x, y, -z) ……….……….……….…………(8)

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
320

W110 (x, y, z) = W000 (x, -y, -z) ……….……….……….…………(9)
W111 (x, y, z) = W000 (-x, -y, -z)… …….……………….……….(10)

Algorithm 2.2 describes the new compression algorithm.

Algorithm 2.2:
1. Extend the weight vectors using equations 4 to 10.
2. for each pixel X = (x1, x2, x3) do:
3. Transform each pixel by deducting 127 from each part and then apply (i.e.,
 X/ = (x1-127, x2-127, x3-127)
4. Let q be the quadrant number on which current pixel falls after transformation.
5. Let there be n number of neurons in each quadrant.
6. for j = 1 to n do:
7. Multiply input vector component with weight vector component and
 calculate the output using the following equation: qjNET

 ∑=
i qijwixqjNET

8. Assign the pixel on that group j of quadrant q for which the value of
 is maximum. qjNET

9. Update the weights Vqp1, Vqp2 and Vqp3 using the following equation:






 −×+=)()()(old

qpj
V

j
xold

qpj
Vnew

qpj
V β

10. Step 2 will be repeated until weights Vpij’s are converged.
11. Generate the output file (the compressed file) as follows:

i) At first store the header portion of the input file.
ii) Next store the weights between the middle layer and the final

layer.
iii) Store the quadrant number after using run length encoding. Finally

for each pixel store the index of the winning neuron.

2.6 Decompression process

The decompression algorithm will accept the compressed file and will produce the
uncompressed bitmap file. The compressed file contains the header portion of the original file
and this header portion will be restored at first during decompression. From this header part
we can retrieve the height and width information of the original image. So total number of
pixels will be calculated by multiplying height and width. Next the weights between the
middle layer and the final layer will be loaded from the compressed file in sequential order.

Algorithm 2.3:
1. Retrieve the header portion of the compressed file.
2. Load the weights between the middle layer and the final layer from the compressed

file.
3. Let n be the total number of pixels determined by multiplying height by width.
4. For n pixels retrieve the quadrant number by applying the reverse algorithm of run

length encoding.
5. For n pixels retrieve the index of the winning neuron.
6. for i = 1 to n do:

Determine the actual winning neuron by using the combination of quadrant
number and cluster number payer. Let the quadrant number be q and the
cluster number be p. Find the weights Vqp1, Vqp2 and Vqp3 and concatenate
these three numbers to constitute color information of the corresponding pixel.

7. Generate the original bitmap file as follows:
i) At first store the header portion.
ii) For each pixel store the color information as described in step 6.

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
321

The weights between the input layer and the middle layer will be loaded from the weight files
saved during the training process.
 During compression the quadrant number of each pixel will be stored using run length
encoding. Now during decompression applying a reverse algorithm of run length encoding
will retrieve this quadrant number. Next during compression the cluster number of the
winning neuron was stored pixel by pixel. Now during decompression this cluster number
will be retrieved for each pixel. For each pixel, using the combination of quadrant number
and the cluster number the actual winning neuron will be determined and the three connecting
weights between the wining neuron and the neurons of the final layer will comprise three
parts of the color information (red, green and blue) of each pixel. Algorithm 2.3 describes the
complete decompression algorithm.

3 Experimental results

The whole network architecture was implemented and tested with various training and test
images. In this section we are going to describe some experimental results obtained from our
network. The image shown in Figure 7(a) was used for training our network. After
compression and decompression procedure the final image obtained from our network is
shown in Figure 7(b). Similarly our network was trained up using the same image by
restricting the total number of clusters. Figure 9 and 10 shows the picture obtained using 128
(network was trained up for 16 clusters) and 64 colors (network was trained up for 8 clusters)
respectively. For all these three cases the quality of the picture obtained after compression-
decompression procedure is quite acceptable. To investigate the generalisation capability of
our network, we have selected some test images and applied them to our network. We have
applied standard “Lena” image and the “Mandrill” image shown in Figure 8(a) and 9(a)
respectively. As you can see for both of the picture our algorithm worked well. Clearly this
indicates about the generalisation capability of our network. The compression ratios achieved
with various color restrictions are shown in Table 1. If we closely observe on images
obtained with various compression ratios for all the images, then certainly we find the quality
fall with increasing compression ratios. Actual quality measure is PSNR (Peak-Signal-to-
Noise-Ratio) and is shown in Table 2 with various compression ratios for all the images.

 Images Total
colors

allowed

Original
file size

Space required
to store

quadrant
number

Space required
to store cluster

number

Compressed
file size

Compression
ratio

 256 300KB 20.6KB 64KB 85KB 3.8:1
Squall 128 300KB 20.6KB 51KB 72KB 4.2:1
 64 300KB 20.6KB 38KB 59KB 5:1
 256 70KB 6.29KB 14.44K 20.73KB 3.37:1
 128 70KB 6.29KB 11.56KB 17.85KB 3.92:1
Lena 64 70KB 6.29KB 8.67KB 14.96KB 4.68:1
 32 70KB 6.29KB 5.77KB 12.06KB 5.80:1
 16 70KB 6.29KB 2.89KB 9.18KB 7.62:1
 256 44.1KB 7.88KB 9.4K 17.28KB 2.55:1
 128 44.1KB 7.88KB 7.33KB 15.21KB 2.90:1
Mandrill 64 44.1KB 7.88KB 5.6KB 13.48KB 3.27:1
 32 44.1KB 7.88KB 3.75KB 10.63KB 4.14:1

16 44.1KB 7.88KB 1.8KB 8.68KB 5.08:1

Table 1: Showing size of various compressed file

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
322

 (a) (b) (c) (d)

Figure 7: The Original file “Squall” is shown in (a). (b), (c), (d) are image obtained using 256,
 128 and 64 colors respectively.

 (a) (b) (c)

 (d) (e)

Figure 8: Showing the quality of the image after compressing the standard “Lena” image in
(a). (b), (c), (d) and (e) are the images having 256, 128,64 and 32 colors respectively.

 (a) (b) (c)

 (d) (e) (f)
Figure 9: Showing the quality of the image after compressing the standard “Mandrill” image
in (a). (b), (c), (d), (e) and (f) are the images having 256, 128,64, 32 and 16 colors respectively.

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
323

 The peak-signal-to-noise-ratio (PSNR) is calculated in three-color quantities
separately using the Equations 11 and 12:

……………………………..(11)

…………………………………(12)

()
()

() ()2
1

1
 and

2255
10log10

∑
=

−=

=














N

j jkyjkx
NcolorMSE

dB
colorMSEcolorPSNR

for each color = red, green and blue. In the equations, xjk is the corresponding color
component’s quantity of the original pixel and yjk is the corresponding color component’s
quantity of the pixel after compression and decompression procedure. The final value of
PSNR is calculated by taking average of three PSNR.

 ……………………………………………(13) 3
PSNR =

)()()(bluePSNRgreenPSNRredPSNR ++

Images Compression

ratio
PSNR(red) in
dB

PSNR(green)
in dB

PSNR(blue)
in dB

PSNR in
dB

 3.8:1 23.12727 22.75904 22.49132 22.79255
 4.2:1 22.36818 21.75789 21.89486 22.00697
Squall 5:1 21.69062 20.01077 19.23142 20.31094
 6.6:1 20.70212 18.04946 17.54719 18.76626
Lena 4.68:1 22.04484 22.01807 23.91896 22.66062
 5.80:1 21.70118 21.28969 22.9719 21.98759
 2.55:1 21.07949 21.06464 21.86561 21.33658
 2.90:1 20.83268 20.1024 21.72429 20.88646
Mandrill 3.27:1 19.89669 19.56891 20.8883 20.11797
 4.14:1 19.41057 19.19419 20.60719 19.73732
 5.08:1 17.77385 17.85663 17.91771 17.8494

Table 2: Showing PSNR of some images with various compression ratios using our algorithm.

15

16

17

18

19

20

21

22

23

24

25

0 2 4 6 8
Compression Ratio

PS
N

R
(d

B) Mandrill
Lena
Squall

17.5

18

18.5

19

19.5

20

20.5

0 20 40 60 80 100
Percentage of disconnected nodes

PS
N

R
(d

B)

Mandrill

Figure 10 shows the PSNR curve for all three images. All curves are decreasing in
PSNR with the increase in compression ratio. As for example the curve for “Mandrill” image

Figure 10: Showing PSNR of various images
 with various compression ratios.

Figure 11: Showing robustness for
 “Mandrill” image

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
324

varies from 21.34 dB with compression ratio of 2.55:1 to 17.85 dB with compression ratio of
5.08:1. So a change of 2.47 in compression ratio causes a quality fall of 3.49 dB in PSNR,
which is quite acceptable. The image “Lena” shows highest value in PSNR for every
compression ratios with respect to all other images. The PSNR curves for the “Lena” image
varies slowly than other two PSNR curves for the “Mandrill” and the “Squall” image. It
clearly indicates that the “Lena” image may be compressed further down with very
insignificant fall in PSNR, whereas further compression in the “Squall” image and the
“Mandrill” image may cause a significant fall in quality.

4 Robustness

To illustrate the robustness of our algorithm we have experimented with the “Mandrill”
image. At first we have chosen the network with 8 clusters per quadrant (thereby allowing 64
colors) and then we disconnected the neuron number 0 and all its connecting weights with
input layer and the final layer for each quadrant. Similarly we have disconnected the neuron
number 1, 2, 3, 4, 5, 6 and 7 of each quadrant. Table 3 shows how much quality falls
occurred by doing such disconnection. Clearly the loss in PSNR is very small (less then 0.4
dB). In fact by disconnecting single neuron in each cluster actually in total 8 neurons in 8
quadrant was off and in fact 12.5% clusters was off, but the change in PSNR is less then 0.4
dB. So our network is very robust also. After that we have experimented with same
“Mandrill” image, this time with 32 colors and we disconnected single neuron of 4 neurons
from each quadrant. Table 4 shows the loss in PSNR. This time, 25% neurons were
disconnected and the PSNR fall is less then 0.7 dB. Clearly our network is robust.
 Figure 11 shows the effect on PSNR with various percentages of disconnected
neurons. Clearly the curve is decreasing with increasing number of disconnected neurons.
The change in PSNR varies in small steps. By disconnecting from 0% to 80 % of total
neurons in the middle layer, the PSNR fall is between 0 to 3.5 dB. Table 5 lists the value of
PSNR in dB for various percentages of disconnected nodes.

Images Disconnected
Neuron
Number

PSNR(red) in dB PSNR(green)
in dB

PSNR(blue) in
dB

PSNR in
dB

 None 19.86457 19.54126 20.84359 20.08314
 0 19.86043 19.51591 20.76448 20.04694
 1 19.67199 19.17281 20.73036 19.85839
 2 19.5899 19.2887 20.74079 19.87313
Mandrill 3 19.85581 19.52733 20.84014 20.07443
 4 19.48934 19.78766 19.9352 19.7374
 5 19.83374 19.51884 20.83287 20.06182
 6 19.8228 19.50572 20.82248 20.05033
 7 19.70749 19.41461 20.34585 19.82265

 Table 3: Showing PSNR by disconnecting 12.5% neurons for “Mandrill” image.

Images Disconnected
Neuron
Number

PSNR(red) in
dB

PSNR(green)
in dB

PSNR(blue) in
dB

PSNR in
dB

 None 19.3798 19.16469 20.56916 19.70455
 0 20.49416 19.3916 18.35762 19.41446
Mandrill 1 19.18535 18.72458 20.46544 19.45846
 2 18.19824 18.65634 20.1941 19.01622
 3 19.18636 19.03782 19.38286 19.20235

 Table 4: Showing PSNR by disconnecting 25% neurons for “Mandrill” image.

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
325

Images % of
Disconnected
Neurons

PSNR(red) in
dB

PSNR(green)
in dB

PSNR(blue)
in dB

PSNR in dB

 0% 19.86457 19.54126 20.84359 20.08314
 12.5% 19.89252 19.54354 20.8087 20.08159
 25% 19.66803 19.14951 20.65326 19.8236
Mandrill 37.5% 19.40246 18.89168 20.57694 19.62369
 50% 19.37933 18.87414 20.36664 19.54004
 62.50% 20.48286 18.66205 18.48897 19.21129
 75% 18.62616 18.35719 18.70977 18.56438
 87.5% 17.74475 17.83206 17.89094 17.82259

Table 5: Showing PSNR at various percentages of disconnected neurons for “Mandrill” image.

5 Conclusions

A counter propagation neural network based image compression technique has been used to
successfully compress and decompress image data. A quality improvement technique
together with faster training procedure has also been proposed. Additional simulation runs
using other types of images (e.g. a building, outdoor scenes) were also performed yielding
similar results to those presented here. Thus when all the network parameters and network
sizes are properly specified, the network has the ability to both learn and generalise over a
wide class of images. The network also shows robustness for various classes of images.
Based on these considerations, this neural network architecture should be considered as a
viable alternative to other more traditional techniques, which are currently used.
 This work may be extended in several ways. The whole image may be subdivided into
small part of sub-images and then our algorithm might be applied to evaluate performance.
Also the correlation between sub-images may be easily exploited to achieve further
compression. A hierarchical counter propagation network might also be employed to get
some effective results.

References

[1] Cottrell, G.W., Munro, P., and Zipser, D.: ‘Image compression by back propagation:

An example of extensional programming’, Advances in Cognitive Science, 1985, 1,
pp. 209-239,

[2] Cottrell, G.W., Munro, P., and Zipser, D.: ‘Learning internal representation from gray
scale images: An example of extensional programming’, Proceedings of the Ninth
Conference of the Cognitive Science Society, 1988, pp. 462-473

[3] Grossberg, S.: ‘Embedding fields: underlying philosophy, mathematics and
applications of psychology, physiology and anatomy’, Journal of Cybernetics, 1971,
pp. 28-50

 [4] Jain, A.K.: ‘Image data compression: A review’, Proceedings of the IEEE, 1981, 69,
pp. 349-389

 [5] Namphol, A., Steven, H. C., and Arozullah, M.: ‘Image compression with a
hierarchical neural network’, IEEE Transactions on Aerospace and Electronic
Systems, 1996, 32 (1), pp. 326-337

 [6] Newaz, M.S. Rahim, and Takashi, Yahagi: ‘Image compression by new sub-image
block classification techniques using neural networks’, IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, 2000, E83-A
(10), pp. 2040-2043

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
326

	A. K. M. Ashikur Rahman and Chowdhury Mofizur Rahman
	Department of Computer Science and Engineering
	Abstract
	Images
	Images
	4 Robustness

	Images
	Images
	Images

