
A New Approach for Compressing Color Images using Neural Network 
 

A. K. M. Ashikur Rahman and Chowdhury Mofizur Rahman 
Department of Computer Science and Engineering 

Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh 
E-mail: ashikur@cs.ualberta.ca, cmr@cse.buet.edu 

 
Abstract 

In this paper a neural network based image compression method is presented. Neural networks 
offer the potential for providing a novel solution to the problem of data compression by its ability 
to generate an internal data representation. Our network, which is an application of counter 
propagation network, accepts a large amount of image data, compresses it for storage or 
transmission, and subsequently restores it when desired. A new approach for reducing training 
time by reconstructing representative vectors has also been proposed. Performance of the 
network has been evaluated using some standard real world images. It is shown that the 
development architecture and training algorithm provide high compression ratio and low 
distortion while maintaining the ability to generalize and is very robust as well.   

 
1 Introduction 
 
 The technology trends are opening up both a capability and a need for digital 
continuous-tone color images. However the massive storage requirement for large numbers of 
high quality images is a technical impediment to widespread use of images. They are 
unsuitable to be transferred over slow communication line. The purpose of the image 
compression is to represent images with less data in order to save storage costs or 
transmission time and costs. However, the most effective compression is achieved by 
approximating the original image (rather than reducing it exactly).  

There has been a considerable amount of activity in the area of image compression 
during the last thirty years [3, 4, 6]. An earlier approach to image compression is the run-
length compression technique which is very familiar to all. Some neural network based image 
compression technique need to be mentioned here. Cottrel employed a two-layer neural 
network using the standard back propagation training algorithm to obtain image compression 
[1, 2]. However his method exploited only the correlation between pixel patches within each 
of the training patches, therefore only limited amount of compression could be achieved. 
Aran and Steven used multi-layer hierarchical network to compress image data [5]. They 
proposed a new training algorithm called nested training algorithm to make the training 
process faster. However they are also limited only to the back propagation technique. They 
have worked only with the gray scale images and the compression ratio achieved using their 
algorithm is 8:1. 

In this paper we have proposed a new method by clustering the vectors onto limited 
number of clusters based on compression requirement. We have used counter propagation 
network, which we think would be the best for our application. Our compression technique is 
not loss less, however we have proposed a compression technique with less amount of 
distortion. 

 
2 Methodology 
 
In a truly uncompressed bitmap file (BMP file), the color information of an image is stored 
pixel by pixel and their position in images is immaterial because they are stored in a 
predetermined order. The color information of a pixel is basically defined by its three-color 
quantities: red, green and blue quantity. By varying the contents of these three quantities 
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various pixels are formed. In a bitmap file 24 bits are allocated for storing each pixel’s color 
information. Each color quantity is basically of 8 bits thereby needs 24 (3×8) bits in total. 
Now 24 bits for a particular pixel means there are 224 (= 16 million) possible colors. During 
compression we should allow lesser number of bits as much as possible to make compression 
process effective. The problem is, if we allow lesser number of bits per pixel during 
compression, then we may not be able to allow such huge number of colors like 16 million. 
In that case we have to reduce the total color requirement and thereby we must prepare 
ourselves to except some loss in the color information. As for example, if we allow 10 bits 
per pixel during compression then we are basically allowing 210 (= 1024) colors only. Images 
can always tolerate some amount of noises if they can be organized in a very tactful manner.      

So we need to reduce total number of colors of an image to achieve compression 
effectively. One way to achieve this objective is to group those pixels together, which are 
exactly same or very close to each other with respect to their color information. If we need to 
design an algorithm which will automatically cluster the similar pixels together then there 
should be some precise underlying definition of similarity between colors. 
 
2.1 Mathematical definition of similar pixels 
 

The total 24 bits required to store the color information of a pixel are divided into 
three equal 8 bits part. Each 8-bit quantity represents the red, green and blue quantity and 
each quantity may vary from 0 to 255. Now if we interpret three color quantities as three 
individual dimensions on a three-dimensional space then each pixel may be viewed as a 
vector lying on a three-dimensional space. Figure 1 shows this diagrammatically.   
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from the picture that although there are many pixels on an image, but all pixels of an image 
may be grouped together into small number of groups. The ultimate quality of the image will 
basically depend upon the total number of allowable groups. As for example if we allow only 
a single group then all pixels are bound to fall upon this single group thereby degrading the 
quality of the image. But if we allow more number of groups then obviously the overall 
picture quality will be improved. In that case the space requirement will be increased. So 
there is a trade- off between total number of groups and total space requirement and we must 
find a balance in between the two. This issue is one of the major concerns of this paper and 
will be explored experimentally.   
 
2.2 Rough sketch of the overall procedure 
 
The whole compression-decompression procedure may be executed in four major steps: 

1. Clustering all the pixels into predetermined number of groups. 
2. Producing a representative color for each group. 
3. For each pixel storing only the cluster number during compression. 
4. During decompression restoring the cluster number and storing the representative 

color of that cluster. 
In the subsequent subsections each of the five major steps are described in details. 
 
2.3 Clustering process 
 
For clustering purpose we have taken the help of neural network and we have found that 
counter propagation network is best suited for our purpose. Counter propagation networks are 
very popular because of its simplicity in calculations and strong power of generalization. 
However other networks such as backpropagation network may also be used for clustering 
purpose, but the major disadvantage of backpropagation network is its training time is higher 
because of the complexity in its equations. 
 For our purpose we have used the counter propagation network shown in Figure 4. 
The total number of neurons in the input layer will be exactly three as each input is basically 
a vector having three constituent parts (e.g., the red, green and blue quantity). For particular 
pixel input the neuron I1 will accept the amount of red quantity, the neuron I2 will accept the  
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amount of green quantity, the neuron I3 will accept the amount of blue quantity.  
The number of neurons in the Kohonen layer will vary based on the total number of 

clusters we allow. If we allow 1024 clusters then there are exactly 1024 neurons and if we 
allow 256 clusters then there are 256 neurons. Each of the neuron in the middle layer has 
connecting weights for each of the neuron of the previous layer. As for example the first 
neuron K1 of the middle layer has three connecting weights w11, w21, and w31 with the neuron 
I1, I2, and I3 of the previous layer respectively. The connecting weights are doing all the tricks 
for clustering the pixels into groups. They will be trained using real life images in 
unsupervised mode. After training all the weights will be finally adjusted to a point on which 
they can distinguish the similar pixels from the dissimilar pixels. 

The neurons in the final layer are responsible for reproduction of the color 
information of pixels. As there are three constituent parts of a pixel that is why there are 
exactly three neurons in this layer. Each of the three neurons is connected by some weights to 
each of the neurons of the previous layer. The connecting weights will be trained up in such a 
way so that they can produce an average of all the colors within a group.    
 The first two layers are shown separately in Figure 5. Let us consider that a new 
image has been given as input for compression. We have to retrieve the pixel information one 
after another and we will apply the color information of each pixel to our network. In the 
following paragraph the clustering process for a particular pixel is described. This process 
will be repeated for each pixel of the image.  
 A particular pixel X has three constituent parts (e.g. the RGB values). Let the three 
constituent parts be x1, x2 and x3. x1 is the amount of red quantity and will be applied to 
neuron I1 of the first layer. x2 (the amount of green quantity) and x3 (the amount of blue 
quantity) will be applied to neurons I2 and I3 respectively. After applying the input we have to 
calculate the output of each neuron in the middle layer. For a particular neuron say K1 the 
output calculation is as follows. The neuron K1 has three weights associated with it, firstly the 
weight w11 between I1 and K1, secondly the eight w21 between I2 and K1, and finally the 
weight w31 between I3 and K1. The output of neuron K1 is named as Net1 and will be 
calculated by using the following equation: 

……………………………………………….(1) 
In this way each neuron of the middle layer has its own connecting weights and for each 
neuron j of the middle layer we have to calculate its output Netj:  

3312211111 xwxwxwNet ++=

…………………………………………….(2) 
After calculating all the outputs of the neurons of the middle layer the neuron having 
maximum output will be declared as the “winning neuron” for the current pixel. The current 
pixel will be assigned to that neuron j for which the output is maximum. When a pixel having 
the similar type of color information will be applied to the input layer, the same neuron is 
going to fire (e.g., the same neuron’s output will be maximum and for a pixel with different 
type a different neuron is going to be fired). In this way the clustering process will be fully 
automated. The Algorithm 2.1 describes the overall procedure of clustering in brief.  

332211 xjwxjwxjwjNet ++=

 
 
 
 
 
 
 
 
 
  
 
 

 

Algorithm 2.1: 
1. for each pixel X = (x1, x2, x3) do: 
2.         Apply the constituent part of the color info. to respective neurons of input layer.       
3.         for  j = 1 to n do: 
4.              Multiply input vector component with weight vector component and calculate 
                    the output  using the following equation: jNET

                     ∑=
i ijwixjNET

5.         Assign the pixel on that group j for which the value of  is maximum. NET
 j
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2.4 Producing the representative color of each group 
 
The final layer (also known as Grossberg layer) of the counter propagation network is 
responsible for reproduction of the colors of the pixels. Truly speaking, the representative 
color for a particular cluster will be the average of all the colors within the cluster. The 
generation of representative color will take place at the time of clustering process. For a 
particular pixel X at first we have to find the winning neuron on which the pixel falls. Only 
the connecting weights between the winning neuron and the three neurons of the final layer 
will be adjusted. The equation for weight adjustment is as follows:  

 ……………………………………………………(3) ijV ))(()()( oldjyoldijVnewijV −+= β
Where, 
    Vij(new) = new weight between neuron i of the middle layer and neuron j of the final layer.  
    Vij(old)  = old weight between neuron i of the middle layer and neuron j of the final layer.  

β = a scalar quantity.    
yj           = the j-th component of the input vector (remember that there are three constituent   
                 parts of an input pixel). 

In Equation 3 actually the amount of the weight adjustment is proportional to the 
difference between the weight and the desired output of the Grossberg neuron to which it 
connects. In summery, the similar pixels will fire the same Kohonen neuron and the weights 
connected to that firing neuron will be adjusted so that it gives an average color of those 
similar color pixels. The network parameter β is actually a scalar quantity and its value is not 
constant. We have to apply all the pixels of a particular image for several times until the 
weights between the Kohonen and Grossberg layer converge. During this time the value of β 
will be increased slowly. Initially its value should be very small say 0.1. Gradually this value 
should be increased in small steps until a sufficient large value say 0.25. Thus it will help the 
convergence process of the weights between the last two layers. One thing should be 
mentioned here, although we are training the weights between the last two layers, during 
normal operation of compression one might think that the process time could be longer. 
Actually the weight convergence time of these weights is very small (about 20-30 seconds) 
and one need not to be worried too much.  
 
2.5 Compression process 
 
The main problem of the clustering algorithm is, it is basically clustering on the basis of 
angular distance of the color vectors ignoring the actual length of those color vectors. 
Consider two pixels p1 (255, 255, 255) and p2 (4, 4, 4). After normalisation they will form two 
vectors V1 (1/√3, 1/√3, 1/√3) and V2 (1/√3, 1/√3, 1/√3). So obviously they are going to fall on 
the same clusters although actually these two pixels are having very dissimilar color 
information. The second problem is, all constituent parts of a color vector are positive. So 
every of them will fall on the 1st quadrant of a three-dimensional space leaving other 
quadrants totally unused. As a result the distribution of the color vectors will be very dense 
over the first quadrant whereas they might be distributed uniformly over the whole three-
dimensional space. 
 To remove these problems, we have taken two necessary steps. At first we have 
deducted 127 from each color value of each pixel. This will cause some constituent parts of 
the color vector to become negative, thereby forcing some color vectors to fall on the other 
quadrants of the three-dimensional space. As for example the previously considered two 
pixels were p1 (255, 255, 255) and p2 (4, 4, 4). Now if we deduct 127 from each part of the 
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color information, the pixels will be transformed into p1(128, 128, 128) and p2(-123, -123, -
123). After normalisation they will form two vectors V1 (1/√3, 1/√3, 1/√3) and V2 (-1/√3, -
1/√3, -1/√3). Now they will fall on two different quadrant namely first and eighth quadrant. 
So this time they will fall on two separate clusters and the average error will be drastically 
reduced.   
 To implement the above-mentioned procedure, a new problem now arises. The weight 
vectors were trained up only for the first quadrant and not for the other quadrants. So this 
needs a retraining of the weight vectors. But if we apply the following procedure then the 
retraining procedure is no longer needed. 
 To avoid the need for retraining, we may easily exploit the symmetrical property of a 
sphere. At first let us consider a two-dimensional space. Suppose the weight vectors are 
trained in the first quadrant and after training, these weight vectors are uniformly distributed 
over the first quadrant. 

Now we need some more weight vectors for the other quadrant. The circle is basically 
symmetrical over its two axes. So we don’t need a further training. Instead, we can just 
construct the four vectors in the second quadrant from the four vectors of the first quadrant 
just by taking the negative of the x values of the each weight vectors of the first quadrant. We 
can construct four other weight vectors in the third quadrant if we just take negative of the x 
and y values of the weight vectors in the first quadrant. Again four other vectors may be 
constructed in the fourth quadrant just taking the negative of the y values. Figure 6a- 6d 
shows all these construction process. 
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Figure 6:   (a) Constructing weight vectors for the second quadrant by taking negative of x values 
            (b) Constructing weight vectors for the third quadrant by taking negative of x and y values. 
                  (c) Constructing weight vectors for the fourth quadrant by taking negative of y values. 
                  (d) Final construction of 16 weight vectors. 

The basic idea is shown above in a two dimensional space. This idea may be easily 
extended for the three dimensional space., because in a three dimensional space there will be 
a sphere instead of circle and a sphere is also symmetrical about its three separate axes.  
Before compression we need to extend our weight vectors. In a three-dimensional space there 
will be eight quadrants. We have the weight vectors for only the first quadrant. In the first 
quadrant all the values of x, y and z are positive. Say these weight vectors are of the form 
W000 (x, y, z). Now let us extend these weight vectors for the second quadrant. In the second 
quadrant, the value of x is negative and the values of y and z are positive. So in the second 
quadrant the weight vectors will be constructed by using the following equation: 

    W001 (x, y, z) = W000 (-x, y, z)……………………………………(4) 
Similarly for other six quadrants the weight vectors will be: 

W010 (x, y, z) = W000 (x,- y, z) ….……..….……………….………(5) 
W100 (x, y, z) = W000 (x, y, -z) ….….…….……………….……….(6) 
W011 (x, y, z) = W000 (-x, -y, z) ….……….……………………….(7) 
W101 (x, y, z) = W000 (-x, y, -z) ……….……….……….…………(8) 
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W110 (x, y, z) = W000 (x, -y, -z) ……….……….……….…………(9) 
W111 (x, y, z) = W000 (-x, -y, -z)… …….……………….……….(10) 

Algorithm 2.2 describes the new compression algorithm. 
 

Algorithm 2.2: 
1. Extend the weight vectors using equations 4 to 10. 
2. for each pixel X = (x1, x2, x3) do: 
3.           Transform each pixel by deducting  127 from each part and then apply (i.e.,  
                 X/ = (x1-127, x2-127, x3-127) 
4.           Let q be the quadrant number on which current pixel falls after transformation.
5.           Let there be n number of neurons in each quadrant. 
6.           for j = 1 to n do: 
7.                   Multiply input vector component with weight vector component and    
                              calculate the output  using the following equation: qjNET

                     ∑=
i qijwixqjNET

8.           Assign the pixel on that group j of quadrant q for which the value of 
                 is maximum. qjNET

9.           Update the weights Vqp1, Vqp2 and Vqp3 using the following equation: 






 −×+= )()()( old

qpj
V

j
xold

qpj
Vnew

qpj
V β  

10. Step 2 will be repeated until weights Vpij’s are converged. 
11. Generate the output file (the compressed file) as follows: 

i) At first store the header portion of the input file.  
ii) Next store the weights between the middle layer and the final

layer.  
iii) Store the quadrant number after using run length encoding. Finally

for each pixel store the index of the winning neuron.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.6 Decompression process 
 
The decompression algorithm will accept the compressed file and will produce the 
uncompressed bitmap file. The compressed file contains the header portion of the original file 
and this header portion will be restored at first during decompression. From this header part 
we can retrieve the height and width information of the original image. So total number of 
pixels will be calculated by multiplying height and width. Next the weights between the 
middle layer and the final layer will be loaded from the compressed file in sequential order.  
 
 
 
 
 
 
 
 
 
 

 

 

 

Algorithm 2.3:  
1. Retrieve the header portion of the compressed file. 
2. Load the weights between the middle layer and the final layer from the compressed 

file. 
3. Let n be the total number of pixels determined by multiplying height by width. 
4. For n pixels retrieve the quadrant number by applying the reverse algorithm of run 

length encoding. 
5. For n pixels retrieve the index of the winning neuron.  
6. for i = 1 to n do: 

Determine the actual winning neuron by using the combination of quadrant 
number and cluster number payer. Let the quadrant number be q and the 
cluster number be p. Find the weights Vqp1, Vqp2 and Vqp3 and concatenate 
these three numbers to constitute color information of the corresponding pixel. 

7. Generate the original bitmap file as follows: 
i) At first store the header portion. 
ii) For each pixel store the color information as described in step 6.      
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The weights between the input layer and the middle layer will be loaded from the weight files 
saved during the training process. 
 During compression the quadrant number of each pixel will be stored using run length 
encoding. Now during decompression applying a reverse algorithm of run length encoding 
will retrieve this quadrant number. Next during compression the cluster number of the 
winning neuron was stored pixel by pixel. Now during decompression this cluster number 
will be retrieved for each pixel. For each pixel, using the combination of quadrant number 
and the cluster number the actual winning neuron will be determined and the three connecting 
weights between the wining neuron and the neurons of the final layer will comprise three 
parts of the color information (red, green and blue) of each pixel. Algorithm 2.3 describes the 
complete decompression algorithm.  
 
3 Experimental results 
 
The whole network architecture was implemented and tested with various training and test 
images. In this section we are going to describe some experimental results obtained from our 
network.  The image shown in Figure 7(a) was used for training our network. After 
compression and decompression procedure the final image obtained from our network is 
shown in Figure 7(b). Similarly our network was trained up using the same image by 
restricting the total number of clusters. Figure 9 and 10 shows the picture obtained using 128 
(network was trained up for 16 clusters) and 64 colors (network was trained up for 8 clusters) 
respectively. For all these three cases the quality of the picture obtained after compression-
decompression procedure is quite acceptable. To investigate the generalisation capability of 
our network, we have selected some test images and applied them to our network. We have 
applied standard “Lena” image and the “Mandrill” image shown in Figure 8(a) and 9(a) 
respectively. As you can see for both of the picture our algorithm worked well. Clearly this 
indicates about the generalisation capability of our network. The compression ratios achieved 
with various color restrictions are shown in Table 1. If we closely observe on images 
obtained with various compression ratios for all the images, then certainly we find the quality 
fall with increasing compression ratios. Actual quality measure is PSNR (Peak-Signal-to-
Noise-Ratio) and is shown in Table 2 with various compression ratios for all the images. 
 

   Images Total 
colors 

allowed 

Original 
file size 

Space required 
to store 

quadrant 
number 

Space required 
to store cluster 

number 

Compressed 
file size 

Compression 
ratio 

 256 300KB 20.6KB 64KB 85KB 3.8:1 
Squall 128 300KB 20.6KB 51KB 72KB 4.2:1 
 64 300KB 20.6KB 38KB 59KB 5:1 
 256 70KB 6.29KB 14.44K 20.73KB 3.37:1 
 128 70KB 6.29KB 11.56KB 17.85KB 3.92:1 
Lena 64 70KB 6.29KB 8.67KB 14.96KB 4.68:1 
 32 70KB 6.29KB 5.77KB 12.06KB 5.80:1 
 16 70KB 6.29KB 2.89KB 9.18KB 7.62:1 
 256 44.1KB 7.88KB 9.4K 17.28KB 2.55:1 
 128 44.1KB 7.88KB  7.33KB 15.21KB 2.90:1 
Mandrill 64 44.1KB 7.88KB 5.6KB 13.48KB 3.27:1 
 32 44.1KB 7.88KB 3.75KB 10.63KB 4.14:1 
 
 

16 44.1KB 7.88KB 1.8KB 8.68KB 5.08:1 

Table 1: Showing size of various compressed file  
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Figure 7: The Original file “Squall” is shown in (a). (b), (c), (d) are image obtained using 256,  
  128 and 64 colors respectively.  
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Figure 8: Showing the quality of the image after compressing the standard “Lena” image in  
(a). (b), (c), (d) and (e) are the images having 256, 128,64 and 32 colors respectively.  

             (a)                                                  (b)                                                       (c)   
 

 
 
 
 
 
             (d)                                                  (e)                                                       (f)   
Figure 9: Showing the quality of the image after compressing the standard “Mandrill” image  
in (a). (b), (c), (d), (e) and (f) are the images having 256, 128,64, 32 and 16 colors respectively.  

default
CIMCA 2003 Proceedings/ISBN 1740880684

default
323



 The peak-signal-to-noise-ratio (PSNR) is calculated in three-color quantities 
separately using the Equations 11 and 12:  
 

……………………………..(11) 
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for each color = red, green and blue. In the equations, xjk is the corresponding color 
component’s quantity of the original pixel and yjk is the corresponding color component’s 
quantity of the pixel after compression and decompression procedure. The final value of 
PSNR is calculated by taking average of three PSNR. 
 
 
                                                                                         ……………………………………………(13) 3
PSNR =

)()()( bluePSNRgreenPSNRredPSNR ++

 
Images Compression 

ratio 
PSNR(red) in 
dB 

PSNR(green) 
in dB 

PSNR(blue) 
in dB 

PSNR in 
dB 

 3.8:1 23.12727 22.75904 22.49132 22.79255 
 4.2:1 22.36818 21.75789 21.89486 22.00697 
Squall 5:1 21.69062 20.01077 19.23142 20.31094 
 6.6:1 20.70212 18.04946 17.54719 18.76626 
Lena 4.68:1 22.04484 22.01807 23.91896 22.66062 
 5.80:1 21.70118 21.28969 22.9719 21.98759 
 2.55:1 21.07949 21.06464 21.86561 21.33658 
 2.90:1 20.83268 20.1024 21.72429 20.88646 
Mandrill 3.27:1 19.89669 19.56891 20.8883 20.11797 
 4.14:1 19.41057 19.19419 20.60719 19.73732 
 5.08:1 17.77385 17.85663 17.91771 17.8494 

Table 2: Showing PSNR of some images with various compression ratios using our algorithm. 
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Figure 10 shows the PSNR curve for all three images. All curves are decreasing in 
PSNR with the increase in compression ratio. As for example the curve for “Mandrill” image 

Figure 10: Showing PSNR of various images  
       with various compression ratios.  

Figure 11: Showing robustness for  
    “Mandrill” image 
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varies from 21.34 dB with compression ratio of 2.55:1 to 17.85 dB with compression ratio of 
5.08:1. So a change of 2.47 in compression ratio causes a quality fall of 3.49 dB in PSNR, 
which is quite acceptable. The image “Lena” shows highest value in PSNR for every 
compression ratios with respect to all other images. The PSNR curves for the “Lena” image 
varies slowly than other two PSNR curves for the “Mandrill” and the “Squall” image. It 
clearly indicates that the “Lena” image may be compressed further down with very 
insignificant fall in PSNR, whereas further compression in the “Squall” image and the 
“Mandrill” image may cause a significant fall in quality. 
 
4 Robustness 
 
To illustrate the robustness of our algorithm we have experimented with the “Mandrill” 
image. At first we have chosen the network with 8 clusters per quadrant (thereby allowing 64 
colors) and then we disconnected the neuron number 0 and all its connecting weights with 
input layer and the final layer for each quadrant. Similarly we have disconnected the neuron 
number 1, 2, 3, 4, 5, 6 and 7 of each quadrant. Table 3 shows how much quality falls 
occurred by doing such disconnection. Clearly the loss in PSNR is very small (less then 0.4 
dB). In fact by disconnecting single neuron in each cluster actually in total 8 neurons in 8 
quadrant was off and in fact 12.5% clusters was off, but the change in PSNR is less then 0.4 
dB. So our network is very robust also. After that we have experimented with same 
“Mandrill” image, this time with 32 colors and we disconnected single neuron of 4 neurons 
from each quadrant. Table 4 shows the loss in PSNR. This time, 25% neurons were 
disconnected and the PSNR fall is less then 0.7 dB. Clearly our network is robust. 
 Figure 11 shows the effect on PSNR with various percentages of disconnected 
neurons. Clearly the curve is decreasing with increasing number of disconnected neurons. 
The change in PSNR varies in small steps. By disconnecting from 0% to 80 % of total 
neurons in the middle layer, the PSNR fall is between 0 to 3.5 dB. Table 5 lists the value of 
PSNR in dB for various percentages of disconnected nodes.  
 

Images Disconnected 
Neuron 
Number 

PSNR(red) in dB PSNR(green) 
in dB 

PSNR(blue) in 
dB 

PSNR in 
dB 

 None 19.86457 19.54126 20.84359 20.08314 
 0 19.86043 19.51591 20.76448 20.04694 
 1 19.67199 19.17281 20.73036 19.85839 
 2 19.5899 19.2887 20.74079 19.87313 
Mandrill 3 19.85581 19.52733 20.84014 20.07443 
 4 19.48934 19.78766 19.9352 19.7374 
 5 19.83374 19.51884 20.83287 20.06182 
 6 19.8228 19.50572 20.82248 20.05033 
 7 19.70749 19.41461 20.34585 19.82265 

  Table 3: Showing PSNR by disconnecting 12.5% neurons for “Mandrill” image. 
 

Images Disconnected 
Neuron 
Number 

PSNR(red) in 
dB 

PSNR(green) 
in dB 

PSNR(blue) in 
dB 

PSNR in 
dB 

 None 19.3798 19.16469 20.56916 19.70455 
 0 20.49416 19.3916 18.35762 19.41446 
Mandrill 1 19.18535 18.72458 20.46544 19.45846 
 2 18.19824 18.65634 20.1941 19.01622 
 3 19.18636 19.03782 19.38286 19.20235 

   Table 4: Showing PSNR by disconnecting 25% neurons for “Mandrill” image. 
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Images % of 
Disconnected 
Neurons  

PSNR(red) in 
dB 

PSNR(green) 
in dB 

PSNR(blue) 
in dB 

PSNR in dB 

 0% 19.86457 19.54126 20.84359 20.08314 
 12.5% 19.89252 19.54354 20.8087 20.08159 
 25% 19.66803 19.14951 20.65326 19.8236 
Mandrill 37.5% 19.40246 18.89168 20.57694 19.62369 
 50% 19.37933 18.87414 20.36664 19.54004 
 62.50% 20.48286 18.66205 18.48897 19.21129 
 75% 18.62616 18.35719 18.70977 18.56438 
 87.5% 17.74475 17.83206 17.89094 17.82259 

Table 5: Showing PSNR at various percentages of disconnected neurons for “Mandrill” image. 
 
5 Conclusions 
 
A counter propagation neural network based image compression technique has been used to 
successfully compress and decompress image data. A quality improvement technique 
together with faster training procedure has also been proposed. Additional simulation runs 
using other types of images (e.g. a building, outdoor scenes) were also performed yielding 
similar results to those presented here. Thus when all the network parameters and network 
sizes are properly specified, the network has the ability to both learn and generalise over a 
wide class of images. The network also shows robustness for various classes of images. 
Based on these considerations, this neural network architecture should be considered as a 
viable alternative to other more traditional techniques, which are currently used. 
 This work may be extended in several ways. The whole image may be subdivided into 
small part of sub-images and then our algorithm might be applied to evaluate performance. 
Also the correlation between sub-images may be easily exploited to achieve further 
compression. A hierarchical counter propagation network might also be employed to get 
some effective results. 
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