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In this paper, we introduce two independent hybrid mining algorithms to improve the classification
accuracy rates of decision tree (DT) and naïve Bayes (NB) classifiers for the classification of multi-class
problems. Both DT and NB classifiers are useful, efficient and commonly used for solving classification
problems in data mining. Since the presence of noisy contradictory instances in the training set may
cause the generated decision tree suffers from overfitting and its accuracy may decrease, in our first
proposed hybrid DT algorithm, we employ a naïve Bayes (NB) classifier to remove the noisy troublesome
instances from the training set before the DT induction. Moreover, it is extremely computationally expen-
sive for a NB classifier to compute class conditional independence for a dataset with high dimensional
attributes. Thus, in the second proposed hybrid NB classifier, we employ a DT induction to select a
comparatively more important subset of attributes for the production of naïve assumption of class con-
ditional independence. We tested the performances of the two proposed hybrid algorithms against those
of the existing DT and NB classifiers respectively using the classification accuracy, precision, sensitivity-
specificity analysis, and 10-fold cross validation on 10 real benchmark datasets from UCI (University of
California, Irvine) machine learning repository. The experimental results indicate that the proposed
methods have produced impressive results in the classification of real life challenging multi-class prob-
lems. They are also able to automatically extract the most valuable training datasets and identify the
most effective attributes for the description of instances from noisy complex training databases with
large dimensions of attributes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

During the past decade, a sufficient number of data mining
algorithms have been proposed by the computational intelligence
researchers for solving real world classification and clustering
problems (Farid et al., 2013; Liao, Chu, & Hsiao, 2012; Ngai, Xiu,
& Chau, 2009). Generally, classification is a data mining function
that describes and distinguishes data classes or concepts. The goal
of classification is to accurately predict class labels of instances
whose attribute values are known, but class values are unknown.
Clustering is the task of grouping a set of instances in such a way
that instances within a cluster have high similarities in comparison
to one another, but are very dissimilar to instances in other clus-
ters. It analyzes instances without consulting a known class label.
The instances are clustered based on the principle of maximizing
the intraclass similarity and minimizing the interclass similarity.
The performance of data mining algorithms in most cases depends
on dataset quality, since low-quality training data may lead to the
construction of overfitting or fragile classifiers. Thus, data prepro-
cessing techniques are needed, where the data are prepared for
mining. It can improve the quality of the data, thereby helping to
improve the accuracy and efficiency of the mining process. There
are a number of data preprocessing techniques available such as
(a) data cleaning: removal of noisy data, (b) data integration:
merging data from multiple sources, (c) data transformations: nor-
malization of data, and (d) data reduction: reducing the data size
by aggregating and eliminating redundant features.

This paper presents two independent hybrid algorithms for
scaling up the classification accuracy of decision tree (DT) and
naïve Bayes (NB) classifiers in multi-class classification problems.
DT is a classification tool commonly used in data mining tasks such
as ID3 (Quinlan, 1986), ID4 (Utgoff, 1989), ID5 (Utgoff, 1988), C4.5
(Quinlan, 1993), C5.0 (Bujlow, Riaz, & Pedersen, 2012), and CART
(Breiman, Friedman, Stone, & Olshen, 1984). The goal of DT is to
create a model that predicts the value of a target class for an un-
seen test instance based on several input features (Loh & Shih,
1997; Safavian & Landgrebe, 1991; Turney, 1995). Amongst other
data mining methods, DTs have various advantages: (a) simple to
understand, (b) easy to implement, (c) requiring little prior
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knowledge, (d) able to handle both numerical and categorical data,
(e) robust, and (f) dealing with large and noisy datasets. A naïve
Bayes (NB) classifier is a simple probabilistic classifier based on:
(a) Bayes theorem, (b) strong (naïve) independence assumptions,
and (c) independent feature models (Farid, Rahman, & Rahman,
2011, 2010; Lee & Isa, 2010). It is also an important mining classi-
fier for data mining and applied in many real world classification
problems because of its high classification performance. Similar
to DT, the NB classifier also has several advantages such as (a) easy
to use, (b) only one scan of the training data required, (c) handling
missing attribute values, and (d) continuous data.

In this paper, we propose two hybrid algorithms respectively
for a DT classifier and a NB classifier for multi-class classification
tasks. The first proposed hybrid DT algorithm finds the trouble-
some instances in the training data using a NB classifier and re-
moves these instances from the training set before constructing
the learning tree for decision making. Otherwise, DT may suffer
from overfitting due to the presence of such noisy instances and
its accuracy may decrease. Moreover, it is also noted that to com-
pute class conditional independence using a NB classifier is extre-
mely computationally expensive for a dataset with many
attributes. Our second proposed hybrid NB algorithm finds the
most crucial subset of attributes using a DT induction. The weights
of the selected attributes by DT are also calculated. Then only these
most important attributes selected by DT with their corresponding
weights are employed for the calculation of the naïve assumption
of class conditional independence. We evaluate the performances
of the proposed hybrid algorithms against those of existing DT
and NB classifiers using the classification accuracy, precision, sen-
sitivity–specificity analysis, and 10-fold cross validation on 10 real
benchmark datasets from UCI (University of California, Irvine) ma-
chine learning repository (Frank & Asuncion, 2010). The experi-
mental results prove that the proposed methods have produced
very promising results in the classification of real world challeng-
ing multi-class problems. These methods also allow us to automat-
ically extract the most representative high quality training datasets
and identify the most important attributes for the characterization
of instances from a large amount of noisy training data with high
dimensional attributes.

The rest of the paper is organized as follows. Section 2 gives an
overview of the work related to DT and NB classifiers. Section 3
introduces the basic DT and NB classification techniques. Section 4
presents our proposed two hybrid algorithms for the multi-class
classification problems respectively based on DT and NB classifiers.
Section 5 provides experimental results and a comparison against
existing DT and NB algorithms using 10 real benchmark datasets
from UCI machine learning repository. Finally, Section 6 concludes
the findings and proposes directions for future work.
2. Related work

In this section, we review recent research on decision trees and
naïve Bayes classifiers for various real world multi-class classifica-
tion problems.
2.1. Decision trees

Decision tree classification provides a rapid and useful solution
for classifying instances in large datasets with a large number of
variables. There are two common issues for the construction of
decision trees: (a) the growth of the tree to enable it to accurately
categorize the training dataset, and (b) the pruning stage, whereby
superfluous nodes and branches are removed in order to improve
classification accuracy. Franco-Arcega, Carrasco-Ochoa, Sanchez-
Diaz, and Martinez-Trinidad (2011) presented decision trees using
fast splitting attribute selection (DTFS), an algorithm for building
DTs for large datasets. DTFS used this attribute selection technique
to expand nodes and process all the training instances in an incre-
mental way. In order to avoid storing all the instances into the DT,
DTFS stored at most N number of instances in a leaf node. When
the number of instances stored in a leaf node reached its limit,
DTFS expended or updated the leaf node according to the class la-
bels of the instances stored in it. If the leaf node of DT contained
training instances from only one class, then DTFS updated the va-
lue of the input tree branch of this leaf node. Otherwise, DTFS ex-
panded the leaf node by choosing a splitting attribute and created
one branch for each class of the stored instances. In this approach,
DTFS always considered a small number of instances in the main
memory for the building of a DT. Aviad and Roy (2011) also intro-
duced a decision tree construction method based on adjusted clus-
ter analysis classification called classification by clustering (CbC). It
found similarities between instances using clustering algorithms
and also selected target attributes. Then it calculated the target
attributes distribution for each cluster. When a threshold for the
number of instances stored in a cluster was reached, all the in-
stances in each cluster were classified with respect to the appropri-
ate value of the target attribute.

Polat and Gunes (2009) proposed a hybrid classification system
based on a C4.5 decision tree classifier and a one-against-all meth-
od to improve the classification accuracy for multi-class classifica-
tion problems. Their one-against-all method constructed M
number of binary C4.5 decision tree classifiers, each of which sep-
arated one class from all of the rest. The ith C4.5 decision tree clas-
sifier was trained with all the training instances of the ith class
with positive labels and all the others with negative labels. The
performance of this hybrid classifier was tested using the classifi-
cation accuracy, sensitivity-specificity analysis, and 10-fold cross
validation on three datasets taken from the UCI machine learning
repository (Frank & Asuncion, 2010). Balamurugan and Rajaram
(2009) proposed a method to resolve one of the exceptions in basic
decision tree induction algorithms when the class prediction at a
leaf node cannot be determined by majority voting. The influential
factor of attributes was found in their work, which gave the
dependability of the attribute value on the class label. The DT
was pruned based on this factor. When classifying new instances
using this pruned tree, the class labels can be assigned more accu-
rately than the basic assignment by traditional DT algorithms.

Chen and Hung (2009) presented an associative classification
tree (ACT) that combined the advantages of both associative clas-
sification and decision trees. The ACT tree was built using a set of
associative classification rules with high classification predictive
accuracy. ACT followed a simple heuristic which selected the attri-
bute with the highest gain measure as the splitting attribute.
Chandra and Varghese (2009) proposed a fuzzy decision tree Gini
Index based (G-FDT) algorithm to fuzzify the decision boundary
without converting the numeric attributes into fuzzy linguistic
terms. The G-FDT tree used the Gini Index as the split measure
to choose the most appropriate splitting attribute for each node
in the decision tree. For the construction of the decision tree, the
Gini Index was computed using the fuzzy-membership values of
the attribute corresponding to a split value and fuzzy-membership
values of the instances. The split-points were chosen as the mid-
points of attribute values where the class information changed.
Aitkenhead (2008) presented a co-evolving decision tree method,
where a large number of variables in datasets were being consid-
ered. They proposed a novel combination of DTs and evolutionary
methods, such as the bagging approach of a DT classifier and a
back-propagation neural network method, to improve the classifi-
cation accuracy. Such methods evolved the structure of a decision
tree and also handled comparatively a wider range of values and
data types.



Table 1
Commonly used symbols and terms.

Symbol Term

xi A data point or instance
X A set of instances
Ai An attribute
Aij An attribute’s value
Wi The weight of attribute Ai

C Total number of classes in a training dataset
Ci A class label
D A training dataset
Di A subset of a training dataset
T A decision tree
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2.2. Naïve Bayes classifiers

The naïve Bayes classifier is also widely used for classification
problems in data mining and machine learning fields because of
its simplicity and impressive classification accuracy. Koc, Mazzuchi,
and Sarkani (2012) applied a hidden naïve Bayes (HNB) classifier to
a network intrusion detection system (NIDS) to classify network at-
tacks. It especially significantly improved the accuracy for the
detection of denial-of-services (DoS) attacks. The HNB classifier
was an extended version of a basic NB classier. It relaxed the condi-
tional independence assumption imposed on the basic NB classifier.
The HNB method was based on the idea of creating another layer
that represented a hidden parent of each attribute. The influences
from all of the other attributes can thus be easily combined through
conditional probabilities by estimating the attributes from the
training dataset. The HNB multiclass classification model exhibited
a superior overall performance in terms of accuracy, error rate and
misclassification cost compared with the traditional NB classifier on
the KDD 99 dataset (McHugh, 2000; Tavallaee, Bagheri, Lu, & Ghor-
bani, 2009). Valle, Varas, and Ruz (2012) also presented an approach
to predict the performance of sales agents of a call centre dedicated
exclusively to sales and telemarketing based on a NB classifier. This
model was tested using socio-demographic (age, gender, marital
status, socioeconomic status and experience) and performance
(logged hours, talked hours, effective contacts and finished records)
information as attributes of individuals. The results showed that the
socio-demographic attributes were not suitable for predicting sale
performances, but operational records proved to be useful for the
prediction of the performances of sales agents.

Chandra and Gupta (2011) proposed a robust naïve Bayes clas-
sifier (R-NBC) to overcome two major limitations i.e., underflow
and over-fitting for the classification of gene expression datasets.
R-NBC used logarithms of probabilities rather than multiplying
probabilities to handle the underflow problem and employed an
estimate approach for providing solutions to over-fitting problems.
It did not require any prior feature selection approaches in the field
of microarray data analysis where a large number of attributes
were considered. Fan, Poh, and Zhou (2010) proposed a partition-
conditional independent component analysis (PC-ICA) method for
naïve Bayes classification in microarray data analysis. It further ex-
tended the class-conditional independent component analysis (CC-
ICA) method. PC-ICA spited the small-size data samples into differ-
ent partitions so that independent component analysis (ICA) can be
done within each partition. PC-ICA also attempted to do ICA-based
feature extraction within each partition that may consist of several
classes. Hsu, Huang, and Chang (2008) presented a classification
method called extended naïve Bayes (ENB) for the classification
of mixed types of data. The mixed types of data included categor-
ical and numeric data. ENB used a normal NB algorithm to calcu-
late the probabilities of categorical attributes. When handling
numeric attributes, it adopted the statistical theory to discrete
the numeric attributes into symbols by considering the average
and variance of numeric values.

3. Supervised classification

Classification is one of the most popular data mining techniques
that can be used for intelligent decision making. In this section, we
discuss some basic techniques for data classification using decision
tree and naïve Bayes classifiers. Table 1 summarizes the most com-
monly used symbols and terms throughout the paper.

3.1. Decision tree induction

A decision tree classifier is typically a top-down greedy ap-
proach, which provides a rapid and effective method for classifying
data instances (Chandra & Paul Varghese, 2009; Jamain & Hand,
2008). Generally, each DT is a rule set. DT recursively partitions
the training datasets into smaller subsets until all the subsets be-
long to a single class. The common DT algorithm is ID3 (Iterative
Dichotomiser), which uses information theory as its attribute
selection measure (Quinlan, 1986). The root node of DT is chosen
based on the highest information gain of the attribute. Given a
training dataset, D, the expected information needed to correctly
classify an instance, xi 2 D, is given in Eq. (1), where pi is the
probability that xi 2 D, belongs to a class, Ci, and is estimated by
jCi,Dj/jDj.

InfoðDÞ ¼ �
Xm

i¼1

pilog2ðpiÞ ð1Þ

In Eq. (1), Info(D) is the average amount of information needed
to identify Ci of an instance, xi 2 D. The goal of DT is to iteratively
partition, D, into subsets, {D1,D2, . . . ,Dn}, where all instances in
each Di belong to the same class, Ci. InfoA(D) is the expected infor-
mation required to correctly classify an instance, xi, from D based
on the partitioning by attributes, A. Eq. (2) shows InfoA(D)
calculation, where jDj j

jDj acts as the weight of the jth partition.

InfoAðDÞ ¼
Xn

j¼1

jDjj
jDj � InfoðDjÞ ð2Þ

Information gain is defined as the difference between the
original information requirement and the new requirement that
is shown in Eq. (3).

GainðAÞ ¼ InfoðDÞ � InfoAðDÞ ð3Þ

The Gain Ratio is an extension to the information gain approach,
also used in DT such as C4.5. A C4.5 classifier is a successor of ID3
classifier (Quinlan, 1993). It applies a kind of normalization to
information gain using a ‘‘split information’’ value defined analo-
gously with Info(D) as shown in Eq. (4).

S plitInfoAðDÞ ¼ �
Xn

j¼1

jDjj
jDj � log2

jDjj
jDj

� �
ð4Þ

The attribute with the maximum Gain Ratio is selected as the
splitting attribute, which is defined in Eq. (5).

GainRatioðAÞ ¼ GainðAÞ
SplitInfoðAÞ ð5Þ

Eq. (6) defines the gini for a dataset, D, where, pj, is the fre-
quency of class Cj 2 D.

GiniðDÞ ¼ 1�
Xm

j¼1

p2
j ð6Þ

The goodness of a split of D into subsets D1 and D2 is defined by
Eq. (7).



Fig. 1. A decision tree generated using the playing tennis dataset.
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ginisplitðDÞ ¼
n1

nðginiðD1ÞÞ
þ n2

nðginiðD2ÞÞ
ð7Þ

In this way, the split with the best gini value is chosen. To
illustrate the operation of DT, we consider a small dataset in Table 2
described by four attributes namely Outlook, Temperature, Humid-
ity, and Wind, which represent the weather condition of a particu-
lar day. Each attribute has several unique attribute values. The Play
column in Table 2 represents the class category of each instance. It
indicates whether a particular weather condition is suitable or not
for playing tennis. Fig. 1 shows the decision tree model constructed
using the playing tennis dataset shown in Table 2.

3.2. Naïve Bayes classification

A naïve Bayes classifier is a simple probabilistic based method,
which can predict the class membership probabilities (Chen,
Huang, Tian, & Qu, 2009; Farid & Rahman, 2010). It has several
advantages: (a) easy to use, and (b) only one scan of the training
data required for probability generation. A NB classifier can easily
handle missing attribute values by simply omitting the corre-
sponding probabilities for those attributes when calculating the
likelihood of membership for each class. The NB classifier also re-
quires the class conditional independence, i.e., the effect of an attri-
bute on a given class is independent of those of other attributes.

Given a training dataset, D = {X1,X2, . . . ,Xn}, each data record is
represented as, Xi = {x1,x2, . . . ,xn}. D contains the following attri-
butes {A1,A2, . . . ,An} and each attribute Ai contains the following
attribute values {Ai1,Ai2, . . . ,Aih}. The attribute values can be dis-
crete or continuous. D also contains a set of classes C = {C1,C2, -
. . . ,Cm}. Each training instance, X 2 D, has a particular class label
Ci. For a test instance, X, the classifier will predict that X belongs
to the class with the highest posterior probability, conditioned
on X. That is, the NB classifier predicts that the instance X belongs
to the class Ci, if and only if P(CijX) > P(CjjX) for 1 6 j 6m,j – i. The
class Ci for which P(CijX) is maximized is called the Maximum
Posteriori Hypothesis.

PðCijXÞ ¼
PðXjCiÞPðCiÞ

PðXÞ ð8Þ

In Bayes theorem shown in Eq. (8), as P(X) is a constant for all
classes, only P(XjCi)P(Ci) needs to be maximized. If the class prior
probabilities are not known, then it is commonly assumed that
the classes are equally likely, that is, P(C1) = P(C2) = � � � = P(Cm),
and therefore maximize P(XjCi). Otherwise, maximize P(XjCi)P(Ci).
The class prior probabilities are calculated by P(Ci) = jCi,Dj/jDj,
where jCi,Dj is the number of training instances belonging to the
class Ci in D. To compute P(XjCi) in a dataset with many attributes
is extremely computationally expensive. Thus, the naïve assump-
Table 2
The playing tennis dataset.

Outlook Temperature Humidity Wind Play

Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No
Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No
tion of class conditional independence is made in order to reduce
computation in evaluating P(XjCi). The attributes are conditionally
independent of one another, given the class label of the instance.
Thus, Eqs. (9) and (10) are used to produce P(XjCi).

PðXjCiÞ ¼
Yn

k¼1

PðxkjCiÞ ð9Þ

PðXjCiÞ ¼ Pðx1jCiÞ � Pðx2jCiÞ � � � � � PðxnjCiÞ ð10Þ

In Eq. (9), xk refers to the value of attribute Ak for instance X.
Therefore, these probabilities P(x1jCi),P(x2jCi), . . ., P(xnjCi) can be
easily estimated from the training instances. Moreover, the attri-
butes in training datasets can be categorical or continuous-valued.
If the attribute value, Ak, is categorical, then P(xkjCi) is the number
of instances in the class Ci 2 D with the value xk for Ak, divided by
jCi,Dj, i.e., the number of instances belonging to the class Ci 2 D.

If Ak is a continuous-valued attribute, then Ak is typically as-
sumed to have a Gaussian distribution with a mean l and standard
deviation r, defined respectively by the following two equations:

PðxkjCiÞ ¼ gðxk;lCi
;rCi
Þ ð11Þ

gðx;l;rÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

r
e�
ðx�pÞ2

2r2 ð12Þ

In Eq. (11), lCi
is the mean and rCi

is the standard deviation of
the values of the attribute Ak for all training instances in the class
Ci. Now we can bring these two quantities to Eq. (12), together with
xk, in order to estimate P(xkjCi). To predict the class label of instance
X,P(XjCi)P(Ci) is evaluated for each class Ci 2 D. The NB classifier
predicts that the class label of instance X is the class Ci, if and only
if

PðXjCiÞPðCiÞ > PðXjCjÞPðCjÞ ð13Þ

In Eq. (13), 1 6 j 6m and j – i. That is the predicted class label is
the class Ci for which P(XjCi)P(Ci) is the maximum probability.
Tables 3 and 4 respectively tabulate the prior probabilities for each
class and conditional probabilities for each attribute value gener-
ated using the playing tennis dataset shown in Table 2.

4. The proposed hybrid learning algorithms

In this paper, we have proposed two independent hybrid
algorithms respectively for decision tree and naïve Bayes classifiers
to improve the classification accuracy in multi-class classification
tasks. These proposed algorithms are described in the following
Table 3
Prior probabilities for each class generated using the playing tennis dataset.

Probability Value

P(Play = Yes) 9/14 = 0.642
P(Play = No) 5/14 = 0.375



Table 4
Conditional probabilities for each attribute value calculated using the playing tennis
dataset.

Probability Value

P(Outlook = SunnyjPlay = Yes) 2/9 = 0.222
P(Outlook = SunnyjPlay = No) 3/5 = 0.6
P(Outlook = OvercastjPlay = Yes) 4/9 = 0.444
P(Outlook = OvercastjPlay = No) 0/5 = 0.0
P(Outlook = RainjPlay = Yes) 3/9 = 0.3
P(Outlook = RainjPlay = No) 2/5 = 0.4
P(Temperature = HotjPlay = Yes) 2/9 = 0.222
P(Temperature = HotjPlay = No) 2/5 = 0.4
P(Temperature = MildjPlay = Yes) 4/9 = 0.444
P(Temperature = MildjPlay = No) 2/5 = 0.4
P(Temperature = CooljPlay = Yes) 3/9 = 0.333
P(Temperature = CooljPlay = No) 1/5 = 0.2
P(Humidity = HighjPlay = Yes) 3/9 = 0.333
P(Humidity = HighjPlay = No) 4/5 = 0.8
P(Humidity = NormaljPlay = Yes) 6/9 = 0.666
P(Humidity = NormaljPlay = No) 1/5 = 0.2
P(Wind = WeakjPlay = Yes) 6/9 = 0.666
P(Wind = WeakjPlay = No) 2/5 = 0.4
P(Wind = StrongjPlay = Yes) 3/9 = 0.333
P(Wind = StrongjPlay = No) 3/5 = 0.6
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Sections 4.1 and 4.2. Algorithm 1 is used to describe the proposed
hybrid DT induction, which employs a NB classifier to remove any
noisy training data at an initial stage to avoid overfitting.
Algorithm 2 is used for the construction of a hybrid NB classifier.
It embeds a DT classifier to identify a subset of most important
attributes to improve efficiency.
4.1. The proposed hybrid decision tree algorithm

In this section, we discuss the proposed Algorithm 1 of the hy-
brid DT induction. It is developed based on a basic C4.5 algorithm.
Given a training dataset, D = {x1,x2, . . . ,xn}, each training instance is
represented as xi = {xi1,xi2, . . . ,xih} and D contains the following
attributes {A1,A2, . . . ,An}. Each attribute, Ai, contains the following
attribute values {Ai1,Ai2, . . . ,Aih}. The training data also belong to a
set of classes C = {C1,C2, . . . ,Cm}. A decision tree is a classification
tree associated with D that has the following properties: (a) each
internal node labeled with an attribute, Ai, (b) each arc labeled with
a predicate that can be applied to the attribute associated with the
parent, and (c) each leaf node labeled with a class, Ci. Once the tree
is built, it is used to classify each test instance, xi 2 D. The result is a
classification for that instance, xi. There are two basic steps for the
development of a DT based application: (a) building the DT from a
training dataset, and (b) applying the DT to a test dataset, D.

For the training dataset, D, we first apply a basic NB classifier to
classify each training instance, xi 2 D. We calculate the prior prob-
ability, P(Ci), for each class, Ci 2 D and the class conditional proba-
bility, P(AijjCi), for each attribute value (even if it is numeric) in D.
Then we classify each training instance, xi 2 D, using these proba-
bilities. The class, Ci, with the highest posterior probability, P(Cijxi),
is selected as the final classification for the instance, xi. Then we re-
move all the misclassified training instances from the dataset D. In
our experiments, these misclassified instances tend to be the trou-
blesome training examples. For example, some of these examples
either contain contradictory characteristics, or carry exceptional
features. Suppose there is a training dataset with two classes. We
calculate the prior and class conditional probabilities using this
example training dataset. Then we calculate the P(ClassjD) for each
instance based on these probabilities. We have found some in-
stances where the probabilities calculated using the NB classifier
indicate that they belong to ‘‘Class = yes’’. However in the training
dataset they are labeled as ‘‘Class = no’’. It seems that there is some
noise within these data, which leads to contradictory results in
comparison with the original labels. Thus these misclassified in-
stances are regarded as troublesome examples. The presence of
such noisy training instances is more likely to cause a DT classifier
to become overfitting, and thus decrease its accuracy.

After removing those misclassified/troublesome instances from
the training dataset, D, we subsequently build a DT for decision
making using the updated training dataset D with those purely
noise free data. For the decision tree generation, we select the best
splitting attribute with the maximum information gain value as
the root node of the tree. Once the root node of DT has been deter-
mined, the child nodes and its arcs are created and added to the DT.
The algorithm continues recursively by adding new subtrees to
each branching arc. The algorithm terminates when the instances
in the reduced training set all belong to the same class. This class
is then used to label the corresponding leaf node. Algorithm 2 out-
lines the proposed DT algorithm. The time and space complexity of
a DT algorithm depends on the size of training dataset, the number
of attributes, and the size of the generated tree.

Algorithm 1. Decision tree induction

Input: D = {x1,x2, . . . ,xn} // Training dataset, D, which contains
a set of training instances and their associated class labels.

Output: T, Decision tree.
Method: 1: for each class, Ci 2 D, do
2: Find the prior probabilities, P(Ci).
3: end for
4: for each attribute value, Aij 2 D, do
5: Find the class conditional probabilities, P(AijjCi).
6: end for
7: for each training instance, xi 2 D, do
8: Find the posterior probability, P(Cijxi)
9: if xi is misclassified, do
10: Remove xi from D;
11: end if
12: end for
13: T = ;;
14: Determine best splitting attribute;
15: T = Create the root node and label it with the splitting

attribute;
16: T = Add arc to the root node for each split predicate and

label;
17: for each arc do
18: D = Dataset created by applying splitting predicate to D;
19: if stopping point reached for this path,
20: T0 = Create a leaf node and label it with an appropriate

class;
21: else
22: T0 = DTBuild(D);
23: end if
24: T = Add T0 to arc;
25: end for
4.2. The proposed hybrid algorithm for a naïve Bayes classifier

In this section, we present a hybrid naïve Bayes classifier with
the integration of a decision tree in order to find a subset of attri-
butes with attribute weighting, which play more important roles in
class determination. In a given training dataset, each instance, xi,
contains values {xi1,xi, . . . ,xih}. There is a set of attributes used to
describe the training data, D = {A1,A2, . . . ,An}. Each attribute con-
tains attribute values Ai = {Ai1,Ai2, . . . ,Aik}. A set of classes C = {C1,-
C2, . . . ,Cn} is also used to label the training instances, where each



Table 5
Dataset descriptions.

Datasets No of Att. Att. Types Instances Classes

Breast cancer 9 Nominal 286 2
Contact lenses 4 Nominal 24 3
Diabetes 8 Real 768 2
Glass 9 Real 214 7
Iris plants 4 Real 150 3
Soybean 35 Nominal 683 19
Vote 16 Nominal 435 2
Image seg. 19 Real 1500 7
Tic-Tac-Toe 9 Nominal 958 2
NSL-KDD 41 Real & Nominal 25192 23
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class Ci = {Ci1,Ci2, . . . ,Cik} also has some values. First of all, in this
proposed hybrid NB algorithm, we generate a basic decision tree,
T, from the training dataset, D, and collect the attributes appearing
in the tree. In this approach, DT is applied as an attribute selection
and attribute weighting method. That is we use the DT classifier to
find the subset of the attributes in the training dataset which play
crucial roles in the final classification. After the tree construction,
we initialize the weight, Wi, for each attribute, Ai 2 D. If the attri-
bute, Ai 2 D, is not tested in the DT then the weight, Wi, of the attri-
bute, Ai, is initialized to zero. Otherwise, we calculate the minimum
depth, d, where the attribute, Ai 2 T, is tested in the DT and initial-
ize the weight, Wi, of the attribute, Ai, with the value of 1ffiffi

d
p . In this

way, the importance of the attributes is measured by their corre-
sponding weights. For example, the root node of the tree has a
higher weight value in comparison with those of its child nodes.
Subsequently, we calculate the class conditional probabilities using
only those attributes selected by DT (i.e., Wi – 0) and classify each
instance xi 2 D using these probabilities. The weights of the se-
lected attributes by the DT are also used as exponential parameters
(see Eq. (14)) for class conditional probability calculation. Other
attributes which are not selected by the DT (i.e., Wi = 0) will not
be considered in the final result probability calculation. I.e., the
class conditional probabilities of those unselected attributes by
DT will not be generated and employed in the classification result
production.

Moreover, we calculate the prior probability, P(Ci), for each
class, Ci, by counting how often Ci occurs in D. For each attribute,
Ai, the number of occurrences of each attribute value, Aij, can be
counted to determine P(Ai). Similarly, the probability P(AijjCi) also
can be estimated by counting how often each Aij occurs in Ci 2 D.
This is done only for those attributes that appear in the DT, T. To
classify an instance, xi 2 D,P(Ci) and P(AijjCi) from D are used to
make the prediction. This is conducted by combining the effects
of different attribute values, Aij 2 xi. As mentioned earlier, the
weights of the selected attributes also influence their class condi-
tional probability calculation as exponential parameters. We esti-
mate P(xijCi) by Eq. (14).

PðxijCiÞ ¼
Yn

j¼1

PðAijjCiÞWi ð14Þ

In Eq. (14), Wi refers to the weight of the attribute, Ai, which ef-
fects on class conditional probability calculation as an exponential
parameter. To calculate P(Cijxi), we need P(Ci) for each Ci, and P(xi-

jCi), and estimate the likelihood that xi is in each Ci. The posterior
probability, P(Cijxi), is then found for Ci. The class, Ci, with the high-
est probability is used to label the instance, xi. Algorithm 2 outlines
the proposed hybrid algorithm for the naïve Bayes classifier.

Algorithm 2. Naïve Bayes classifier

Input: D = {x1,x2, . . . ,xn} // Training data.
Output: A classification Model.
Method: 1: T = ;;
2: Determine the best splitting attribute;
3: T = Create the root node and label it with the splitting

attribute;
4: T = Add arc to the root node for each split predicate and

label;
5: for each arc do
6: D = Dataset created by applying splitting predicate to D;

7: ifstopping point reached for this path, then
8: T0 = Create a leaf node and label it with an appropriate

class;
9: else
10: T0 = DTBuild(D);
11: end if
12: T = Add T0 to arc;
13: end for
14: for each attribute, Ai 2 D, do
15: if Ai is not tested in T, then
16: Wi = 0;
17: else
18: d as the minimum depth of Ai 2 T, and Wi ¼ 1ffiffi

d
p ;

19: end if
20: end for
21: for each class, Ci 2 D, do
22: Find the prior probabilities, P(Ci).
23: end for
24: for each attribute, Ai 2 D and Wi – 0, do
25: for each attribute value, Aij 2 Ai, do

26: Find the class conditional probabilities, PðAij j CiÞWi .
27: end for
28: end for
29: for each instance, xi 2 D, do
30: Find the posterior probability, P(Cijxi);
31: end for
5. Experiments

In this section, we describe the test datasets and experimental
environments, and present the evaluation results for both of the
proposed hybrid decision tree and naïve Bayes classifiers.

5.1. Datasets

The performances of both of the proposed hybrid decision tree
and naïve Bayes algorithms are tested on 10 real benchmark data-
sets from UCI machine learning repository (Frank & Asuncion,
2010). Table 5 describes the datasets used in experimental analy-
sis. Each dataset is roughly equivalent to a two-dimensional
spreadsheet or a database table. The 10 datasets are:

1. Breast Cancer Data (Breast cancer).
2. Fitting Contact Lenses Database (Contact lenses).
3. Pima Indians Diabetes Database (Diabetes).
4. Glass Identification Database (Glass).
5. Iris Plants Database (Iris plants).
6. Large Soybean Database (Soybean).
7. 1984 United States Congressional Voting Records Database

(Vote).
8. Image Segmentation Data (Image seg.)
9. Tic-Tac-Toe Endgame Data (Tic-Tac-Toe).

10. NSL-KDD Dataset (NSL-KDD).



Table 7
The classification accuracies of classifiers using training datasets.
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5.2. Experimental setup

The experiments were conducted using a machine with an Intel
Core 2 Duo Processor 2.0 GHz processor (2 MB Cache, 800 MHz
FSB) and 1 GB of RAM. We implement both of the proposed algo-
rithms (Algorithms 1 and 2) in Java. We use NetBeans IDE 7.1 in
Redhat enterprise Linux 5 for Java coding. NetBeans IDE is the first
IDE providing support for JDK 7 and Java EE 6 (http://netbeans.org/
index.html). The code for the basic versions of the DT and NB
classifiers is adopted from Weka3, which is open source data min-
ing software (Hall et al., 2009). It is a collection of machine learning
algorithms for data mining tasks. Weka3 contains tools for data
pre-processing, classification, regression, clustering, association
rules, and visualization. The mining algorithms in Weka3 can be
either applied directly to a dataset or called from our own coding.

To test the proposed hybrid methods, we have used the classi-
fication accuracy, precision, sensitivity-specificity analysis, and 10-
fold cross validation. The classification accuracy is measured either
by Eq. (15) or by Eq. (16).

accuracy ¼
PjXj

i¼1assessðxiÞ
jXj ; xi 2 X ð15Þ

If classify(x) = x � c then assess(x) = 1 else assess(x) = 0, where X is
the set of instances to be classified, x 2 X and x � c is the class of in-
stance, x. Also, classify(x) returns the classification of x. Eqs. (17)–
(19) are used for the calculations of precision, sensitivity (also
called the true positive rate, or the recall rate), and specificity (also
called the true negative rate). A perfect classifier would be de-
scribed as 100% sensitivity and 100% specificity. Table 6 summa-
rizes the symbols and terms used throughout in Eqs. (16)–(19).

accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð16Þ

precision ¼ TP
TP þ FP

ð17Þ

sensitivity ¼ TP
TP þ FN

ð18Þ

specificity ¼ TN
TN þ FP

ð19Þ

where, TP, TN, FP and FN denote true positives, true negatives, false
positives, and false negatives, respectively.

In k-fold cross-validation, the initial data are randomly parti-
tioned into k mutually exclusive subsets or ‘‘folds’’, D1,D2, . . ., Dk,
each of which has an approximately equal size. Training and test-
ing are performed k times. In iteration i, the partition Di is reserved
as the test set, and the remaining partitions are collectively used to
train the classifier. 10-fold cross validation breaks data into 10 sets
of size N/10. It trains the classifier on 9 datasets and tests it using
the remaining one dataset. This repeats 10 times and we take a
mean accuracy rate. For classification, the accuracy estimate is
the overall number of correct classifications from the k iterations,
divided by the total number of instances in the initial dataset.
Table 6
Symbols used in Eqs. (16)–(19) and their meanings.

Symbol Intuitive Meaning

TP xi predicted to be in Ci and is actually in it
TN xi not predicted to be in Ci and is not actually in it
FP xi predicted to be in Ci but is not actually in it
FN xi not predicted to be in Ci but is actually in it
accuracy ‘‘%’’ of predictions that are correct
precision ‘‘%’’ of positive predictions that are correct
sensitivity ‘‘%’’ of positive instances that are predicted as positive
specificity ‘‘%’’ of negative instances that are predicted as negative
5.3. Results and discussion

Firstly, we evaluated the performances of proposed algorithms
(Algorithms 1 and 2) against existing DT and NB classifiers using
the classification accuracy on the training sets of the 10 benchmark
datasets shown in Table 5. Table 7 summarizes the classification
accuracy rates of the basic C4.5 and NB classifiers, and the pro-
posed hybrid algorithms for each of the 10 training datasets.

The results in Table 7 indicate that the proposed DT algorithm
(Algorithm 1) outperforms the C4.5 DT classifier for the classifica-
tion of the diabetes dataset by 7.55%, the tic-tac-toe dataset by
4.7%, the contact lenses dataset by 4.17% and the NSL-KDD dataset
by 3.89%. Algorithm 1 is capable of identifying the noisy instances
from each dataset before the DT induction. This DT classifier gen-
erated from the updated noise free high quality representative
training dataset is less likely to become overfitting and thus able
to carry more generalization capabilities comparing to the DT
generated directly from the original training instances using C4.5
algorithm.

Moreover, in Table 7, the proposed NB algorithm (Algorithm 2)
also outperforms the traditional NB classifier for the classification
of all 10 training datasets, since it is able to identify the most
important and discriminative subset of attributes for the
production of naïve assumption of class conditional independence
comparing to the basic NB classifier. Among all the 10 datasets, the
proposed NB algorithm respectively improves the classification
rates of the glass dataset by 18.23%, the tic-tac-toe dataset by
8.98%, the image seg. dataset by 4.87% and the contact lenses
dataset by 4.17%.

Secondly, we have used classification accuracy, precision,
sensitivity, specificity, and 10-fold cross validation to measure
the performances of the proposed algorithms (Algorithms 1 and
2) using all 10 datasets. We consider the weighted average for pre-
cision, sensitivity and specificity analysis for each dataset. The
weighted average is similar to an arithmetic mean, where instead
of each of the data points contributing equally to the final average,
some data points contribute more than others. For example, the
weighting for the evaluation of this research is calculated using
the number of instances belonging to one class divided by the total
number of instances in one dataset. The detailed results for the
weighted average of precision, sensitivity and specificity analysis
for the experiments conducted are presented in Tables 8–11.

Evaluated using all the instances in the 10 datasets, the tradi-
tional C4.5 DT achieved an average accuracy rate of 83.5% using
10-fold cross validation. The proposed DT algorithm (Algorithm
1) obtained an average accuracy rate of 88.3% for the classification
of the 10 datasets. Tables 8 and 9 respectively tabulate the perfor-
mances of the classic C4.5 classifier and the proposed DT algorithm
on 10 datasets using 10-fold cross validation.
Training
datasets

C4.5 DT
classifier
(%)

NB
classifier
(%)

Proposed DT
classifier (%)
(Algorithm 1)

Proposed NB
classifier(%)
(Algorithm 2)

Breast cancer 96.33 93.7 98.82 95.9
Contact lenses 91.66 95.83 95.83 100
Diabetes 84.11 76.30 91.66 79.55
Glass 96.26 55.60 97.66 73.83
Iris plants 98 96 100 98.66
Soybean 96.33 93.7 99.85 96.63
Vote 97.24 90.34 98.85 93.33
Image seg. 99.0 81.66 99.6 86.53
Tic-Tac-Toe 93.73 69.83 98.43 78.81
NSL-KDD 73.37 79.94 77.26 83.44



Table 8
The classification accuracies and precision, sensitivity and specificity values for a C4.5
classifier with 10-fold cross validation.

Datasets Classification
accuracy (%)

Precision
(weighted
avg.)

Sensitivity
(weighted
avg.)

Specificity
(weighted
avg.)

Breast cancer 75.52 0.752 0.755 0.245
Contact lenses 83.33 0.851 0.833 0.166
Diabetes 73.82 0.735 0.738 0.261
Glass 66.82 0.67 0.668 0.331
Iris plants 96 0.96 0.96 0.04
Soybean 91.50 0.842 0.849 0.065
Vote 96.32 0.963 0.963 0.036
Image seg. 95.73 0.819 0.957 0.042
Tic-Tac-Toe 85.07 0.849 0.851 0.149
NSL-KDD 71.11 0.711 0.711 0.288

Table 9
The classification accuracies and precision, sensitivity and specificity values for the
proposed hybrid DT classifier with 10-fold cross validation.

Datasets Classification
accuracy (%)

Precision
(weighted
avg.)

Sensitivity
(weighted
avg.)

Specificity
(weighted
avg.)

Breast cancer 81.46 0.834 0.814 0.185
Contact lenses 91.66 0.931 0.916 0.083
Diabetes 79.03 0.788 0.79 0.209
Glass 76.27 0.767 0.762 0.237
Iris plants 98.66 0.986 0.986 0.013
Soybean 92.97 0.866 0.871 0.057
Vote 97.70 0.977 0.977 0.022
Image seg. 96.53 0.826 0.965 0.034
Tic-Tac-Toe 88.1 0.88 0.881 0.118
NSL-KDD 81.92 0.826 0.819 0.18

Table 10
The classification accuracies and precision, sensitivity and specificity values for a NB
classifier with 10-fold cross validation.

Datasets Classification
accuracy (%)

Precision
(weighted
avg.)

Sensitivity
(weighted
avg.)

Specificity
(weighted
avg.)

Breast cancer 71.67 0.703 0.716 0.283
Contact lenses 70.83 0.691 0.708 0.291
Diabetes 76.30 0.758 0.763 0.236
Glass 48.59 0.496 0.485 0.514
Iris plants 96 0.96 0.96 0.04
Soybean 92.83 0.87 0.872 0.055
Vote 90.11 0.905 0.901 0.098
Image seg. 81.06 0.708 0.81 0.189
Tic-Tac-Toe 69.62 0.682 0.696 0.3
NSL-KDD 76.27 0.764 0.762 0.237

Table 11
The classification accuracies and precision, sensitivity and specificity values for the
proposed hybrid NB classifier with 10-fold cross validation.

Datasets Classification
accuracy (%)

Precision
(weighted
avg.)

Sensitivity
(weighted
avg.)

Specificity
(weighted
avg.)

Breast cancer 75.87 0.75 0.758 0.241
Contact lenses 87.50 0.909 0.875 0.125
Diabetes 85.41 0.853 0.854 0.145
Glass 52.33 0.533 0.523 0.476
Iris plants 98 0.98 0.98 0.02
Soybean 94.15 0.891 0.893 0.047
Vote 94.48 0.945 0.944 0.055
Image seg. 85.19 0.742 0.852 0.148
Tic-Tac-Toe 78.91 0.786 0.789 0.21
NSL-KDD 82.39 0.836 0.823 0.176

Fig. 2. The comparison of classification accuracy rates between the C4.5 DT and the
proposed DT classifiers on 10 datasets with 10-fold cross validation.
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Moreover, the results shown in Tables 8 and 9 indicate that the
proposed DT algorithm outperforms the traditional C4.5 DT classi-
fier in all the test cases. In comparison with the traditional DT, the
proposed DT classifier has respectively improved the classification
accuracy rates of the NSL-KDD dataset by 10.81%, the glass dataset
by 9.45%, the contact lenses dataset by 8.33%, and the breast cancer
dataset by 5.94%. Overall, it has improved the classification accu-
racy rates for the classification of the above 10 datasets by 4.8%
on average comparing to the traditional DT classifier.

Furthermore, we have also evaluated the traditional NB classi-
fier using all the 10 datasets and achieved an average accuracy rate
of 77.3% using 10-fold cross validation, while the proposed NB clas-
sifier (Algorithm 2) obtained an average accuracy rate of 86.7%.
Tables 10 and 11 respectively tabulate the performances of the
traditional NB classifier and the proposed NB algorithm on 10 data-
sets using 10-fold cross validation.

The results shown in Tables 10 and 11 indicate that the
proposed NB algorithm (Algorithm 2) also outperforms the basic
NB algorithm for all the test cases. Comparing to the traditional
NB classifier, the proposed NB algorithm has respectively improved
the classification accuracy rates of the contact lenses dataset by
16.67%, the diabetes dataset by 9.11%, the tic-tac-toe dataset by
9.29%, and the NSL-KDD dataset by 6.12%. Algorithm 2 has
improved the classification accuracy rates for all the 10 datasets
by 9.4% on average in comparison to the classic NB classifier.

Figs. 2 and 3 respectively show the comparison of classification
accuracy rates between the C4.5 DT and the proposed DT classifi-
ers, and between a basic NB and the proposed NB classifiers for
each dataset with 10-fold cross validation. Fig. 4 also shows the
comparison of classification accuracy rates of all classifiers on 10
datasets with 10-fold cross validation.

Overall, Algorithm 1 is able to automatically remove noisy
instances from training datasets for DT generation to avoid overfit-
ting. It thus possesses more robustness and generalization capabil-
ities. Algorithm 2 is capable of identifying the most discriminative
subset of attributes for classification. The evaluation results prove
the efficiency of the proposed DT and NB algorithms (Algorithm 1
and 2) for the classification of challenging real benchmark datasets.
They respectively outperform the traditional C4.5 DT and NB
classifiers in all the test cases (see Figs. 2 and 3).



Fig. 3. The comparison of classification accuracy rates between the basic NB and
the proposed hybrid NB classifiers on 10 datasets with 10-fold cross validation.

Fig. 4. The comparison of classification accuracy rates of all classifiers on each
dataset with 10-fold cross validation.

D.Md. Farid et al. / Expert Systems with Applications 41 (2014) 1937–1946 1945
6. Conclusions

In this paper, we have proposed two independent hybrid
algorithms for DT and NB classifiers. The proposed methods im-
proved the classification accuracy rates of both DT and NB classifiers
in multi-class classification tasks. The first proposed hybrid DT algo-
rithm used a NB classifier to remove the noisy troublesome
instances from the training set before the DT induction, while the
second proposed hybrid NB classifier used a DT induction to select
a subset of attributes for the production of naïve assumption of class
conditional independence. The performances of the proposed
algorithms were tested against those of the traditional DT and NB
classifiers using the classification accuracy, precision, sensitivity-
specificity analysis, and 10-fold cross validation on 10 real bench-
mark datasets from UCI machine learning repository. The
experimental results showed that the proposed methods have pro-
duced impressive results for the classification of real life challenging
multi-class problems. In future work, other classification algo-
rithms, such as naïve Bayes tree (NBTree), genetic algorithms, rough
set approaches and fuzzy logic, will be used to deal with real-time
multi-class classification tasks under dynamic feature sets.
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