
Prediction of Lysine-Malonylation Sites via Sequential

and Physicochemical Features

Asif Ahmed

Kenedy Sarkar

Yeazullah Aziz
Toha Khan

Department of Computer Science and Engineering

United International University

A thesis submitted for the degree of

BSc in Computer Science & Engineering

September 2018

mailto:email_address@gmail.com
mailto:email_address@gmail.com
mailto:email_address@gmail.com
mailto:email_address@gmail.com


Declaration

I, Asif Ahmed, Kenedy Sarkar, Yeazullah Aziz, Toha Khan, declare that

this thesis titled, Prediction of Lysine-Malonylation Sites via Sequential

and Physicochemical Features and the work presented in it are my own. I

confirm that:

� This work was done wholly or mainly while in candidature for a BSc

degree at United International University.

� Where any part of this thesis has previously been submitted for a

degree or any other qualification at United International University or

any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always

clearly attributed.

� Where I have quoted from the work of others, the source is always

given. With the exception of such quotations, this thesis is entirely

my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have

contributed myself.

Signed:

Date:

(Asif Ahmed, Kenedy Sarkar, Yeazullah Aziz, Toha Khan)



Certificate

I do hereby declare that the research works embodied in this thesis entitled

Thesis Title is the outcome of an original work carried out by Asif Ahmed,

Kenedy Sarkar, Yeazullah Aziz, Toha Khan under my supervision.

I further certify that the dissertation meets the requirements and the stan-

dard for the degree of BSc in Computer Science and Engineering.

Signed:

Date:

Dr. Swakkhar Shatabda

Department of Computer Science and Engineering,

United International University,

Dhaka-1209, Bangladesh.



Abstract

Lysine Malonylation is Post Translational Modification responsible for Type-

2 diabetes, Cancer etc. It is a challenging problem as the data from kmal

studies are highly imbalanced. In this work we propose Hybrid sampling

a combination of RUS and SMOTE at certain ratios in combination with

mutual information feature selection, Balanced Random Forest to solve this

problem.
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Chapter 1

Introduction

1.1 Motivation

Computational prediction of Lysine Malonylation can help medical researcher under-

stand better about impact of Kmal in diseases. Computational identification can also

help select some sites to experiment on lab. Working with huge amount of protein

sequences to find the correct one to conduct experiments is hard. For this reasons,

we like to narrow it down by our work of predicting possible Malonylation sites. This

will help researcher to experiment on those particular protein sequences rather than

randomly picking protein sequences.

1.1.1 Lysine Malonylation

Lysine Malonylation is a recently discovered Post Translational Modificaiton(PTM)

that plays a role in Type 2 diabetes, Glucose and Fatty Acid metabolism. Malonyla-

tion was first identified in both mammalian and bacterial cells in 2011[1–6]. Existing

Malonylation sites are obtained from proteomic studies. Lysine Malonylation was ob-

served that malonylation plays a potential role in type 2 diabetes, whereas further

bioinformatic analysis of the proteomic results revealed the enrichment of malony-

lated proteins in metabolic pathways, especially the pathways of glucose and fatty acid

metabolisms[2, 7–10].
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1.2 Objectives of the Thesis

1.1.2 Site Identification

Mass Spectrometry (MS)-based experiments, Isotopic labeling, Chemical probe, Affin-

ity enrichment and Label free quantitative proteomics are some methods that were used

to identify Lysine Malonylation sites[1, 3]. Experiments are costly in terms of infrastruc-

ture and and time consuming. It is very hard to conduct these experiments for many

different species at various conditions. computational methods facilitate hypothesis-

driven experimental validation. Its less costly, faster and more flexible in both methods

than InVitro experiments[11]

1.2 Objectives of the Thesis

The primary objective of the thesis is to improve upon existing work on Lysine Malony-

lation problem. Also learn from their mistake and correct those segments. The correct

application of machine learning in Bioinformatics to solve a problem is more important,

since it very easy to overfit and get incorrect estimation of model performance. Fur-

thermore to apply the knowledge gained from this problem to other PTM and Protein

classification problems. Coming up with new approach such as new sampling method,

feature generation and selection method for highly imbalanced data can ease work on

future bioinformatics problems.

1.3 Thesis Contributions

The work of Lysine Malonylation has generated four tools for better prediction. But

each come with their own weaknesses. Low amount of data, obsolete proteins, mis-

labeled proteins in multiple different tools, highly imbalanced data are some of the

motivators for our work.

Most work on Kmal provide results in metrics which are skewed by data imbalance.

We use other metrics such as Cohen’s kappa, auPR alongside regular ones to provide

our results.

We found that obsolete proteins are not usually checked for even in latest research,

but only following given dataset. There is problem even in experimentally validated

positive and negative sites as there are some sites mislabeled between Mal-Lys and

Malopred. There is also challenge of dummy Amino Acid.
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1.4 Organization of the Thesis

In our work most focus has been on balancing method. Even using only structural

and physicochemical features it is possible to get better results through better sam-

pling and classifier parameter tuning. We have experimented by combining multiple

undersampling methods with SMOTE based oversampling. All other works have used

some form of feature selection, we found that feature selection does not always improve

performance rather degrades it in some cases.

1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 provides related works.

Chapter 3 presents the proposed method.

Chapter 4 discusses the results and experimental analysis.

Chapter 5 presents the conclusions, summaries the thesis contributions, and discusses

the future works.
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Chapter 2

Related Work

2.1 Mal-Lys

Mal-Lys is the first reported work on computational prediction of Kmal sites. They

have used asymmetric window for kmal classification. Their window size is 16 with 6

upstream and 9 downstream. Their method of performance measurement is only shown

in ROC with LOO, 6, 8, 10 fold cross validation in combination with independent test

set. [12]

Their choice of classification algorithm is SVM and no sampling is mentioned. Se-

quential and physicochemical properties were used for feature construction. They have

used mRMR feature selection method to improve their results.

The main drawback of Mal-Lys is that they have used small training set and even

smaller independent test set. Their independent test set contains only 25 positive sites,

most of which belong to same protein. Unlike Sprint-Mal they mixed their kmal sites,

so same proteins are in test and train set with different sites.

As ROC is not a very good measure for imbalanced dataset without other metrics to

compare, the only other option is to query their web server to generate other necessary

metrics.

2.2 Malo-Pred

Malopred is followed by Mal-Lys for Kmal classification. They have used SVM for

classification with no metion of any sampling methods. Physicochemical, Evolutionary
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2.3 Sprint-Mal

and Sequential features were used for feature set construction. Information Gain was

used as a feature seleciton method.[13]

They have used metrics such as auROC, MCC, Accuracy, Sensitivity, Specificity to

measure their performance. Some of the positive kmal sites from Malopred are labeled

negative in Mal-Lys and viceversa. The window size was chosen 25 to be optimal for

their working method, with 12 Amino Acid residues on each side.

2.3 Sprint-Mal

Sprint-Mal web server is created from PLMD 3.0 database as well as previous studies.

For their work they have used 1287 proteins for Mouse, 937 proteins for Humans and

112 proteins for Bacteria. The dataset they have used is highly imbalanced at ratios

such as 1:11, 1:21, 1:23, 1:31 etc. The window size for their work is 17 with 8 flaking

Amino Acid residues on each side.[14]

They have done 1:3 Random under sampling to negate the impact imbalance ratio.

Structural, Physicochemical, Evolutionary and Sequential features were used for feature

set construction. Sequence Forward feature selection was used reduce dimensionality

and improve performance.

They have used metrics such as auROC, MCC, Accuracy, Sensitivity, Specificity to

measure their performance. Some of their dataset is erroneous as the some of the same

proteins are used in human test and train. Human test also has one duplicate proteins.

They have compared their performance to both Mal-Lys and Malopred by inputting

their test set in their respective servers. Their reported result beat both Mal-Lys and

Malopred. But due to obsolescence of some of their proteins, we have chosen to work

with their dataset with obsolete proteins removed.

2.4 Kmal-Sp

Kmal-Sp is the most recent work on Lysine Malonylation. They have also used 25 size

window with 12 flaking Amino Acid residues on each side. The have done performance

comparison with all three previous works. The method of their test was to query other

servers with their test set and generate comparison metrics. [15]
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2.5 Summary

They have used metrics such as Precision, auROC, MCC, Accuracy, Sensitivity,

Specificity to measure their performance. Obsolete proteins are present in their dataset

as they were not removed from the dataset collected from Malopred.

2.5 Summary

Previous work has been done on the problem of Kmal. But the more tools developed the

higher confidence for a researcher to select sites to test based on voting from multiple

Kmal tools. Obsolesce, mistagging and emergence of newer tested proteins make it

more important to develop a tools in the same problem domain.
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Chapter 3

Proposed Method

We propose a new method for prediction of Lysine Malonylation sites in protein through

sequential and physicochemical feature generation, mutual information based feature

selection, ratio based undersampling through Instance Hardness Reduction and finally

classification through SVM.

3.1 Data Collection

Data sets are collected from previous work on computational predication of Lysine

Malonylation sites [12–14] as well as from PLMD 3.0 database [16]. The positive sites

in experimentally verified protein is chosen as positive sites and rest with certain flaking

amount on both upstream and downstream is chosen as negative sites.

3.2 Feature Extraction Techniques

Below we present a list of techniques used in relevant literature for feature extraction

from protein.

3.2.1 Feature Extraction

• Enhanced Amino Acid Composition (EAAC)

• Composition/Transition/Distribution Composition (CTDC)

• Quasi Sequence Order (QSO)
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3.2 Feature Extraction Techniques

• Pseudo Amino Acid Composition (PseAAC)

3.2.2 EAAC

EAAC is similar to AAC but it has a window that slides from N terminus to C terminus

by certain amount until sequence length is reached. [17]

f(t, win) =
N(t, win)

L(win)
, t ∈ {A,C,D, ...., Y }, t = {win1, win2, ..., win(L−K + 1)}

If window size is K, then the last window is, L−K + 1. Here, L(win) is the length

of sliding window and N(t, win) is the count of Amino Acid residues in that window

of protein seqeunce. The feature vector here is (L−K + 1) ∗ 20.

3.2.3 CTD

CTD stands for Composition Transition Distribution. It has three part CTDC, CTDT,

CTDD. CTDC is the count of various properties of Amino Acids divided into groups.

Hydrophobicity can be divided into polar, neutral, hydrophibic, secondary structure

can be helix, strand, coil. These physicochemical properties with grouping can be

found on AAINDEX.

f(t) =
N(t)

L
, t ∈ {polar, neutral, hydrophobic}

The set t can be constructed also for Secondary Structure, Solvent Accessibility,

Charge, Polarizibility, Van Der Waals Volume etc.

CTDT is the transition from one group to another in the same physicochemical

property. A modified version can be tested with 3 transitions instead of 2.

f(t1, t2) =
N(t1, t2) +N(t2, t1)

L− 1

Here, L is the protein sequence length and Amino Acid residues t1, t2 is in format,

{(group1,group2),(group2,group3),(group3,group1)}

t1, t2 ∈ {(polar, neutral), (neutral, hydrophobic), (hydrophobic, polar)}

CTDD is similar to AAC in way that it count the occurence of each group for given

physicochemical property then normalizes it by the length of the sequence. It does it

8



3.2 Feature Extraction Techniques

at occurance of first residue of a given group and at (25, 50, 75, 100)% occurence of any

group divided by sequence length. [17]

3.2.4 Sequence Order Coupling

If sequence length is N and protein sequence N-terminus to C-terminus is R1, R2, ..., RN

then d is the rank of sequence order coupling. It is given by,

τd =

N−d∑
i=1

(di,i+d)
2, d = 1, 2, 3..., nlag

Where, di,i+d is entry in distance matrix such as physicochemical, chemical distance

matrix between two Amino Acids. If both matrices are used then feature vector will be,

nlag ∗ 2. Example, if nlag = 3 then, d = 1, 2, 3. For, d = 1, then rank will be, τ1 which

is between R1R2, R2R3,...,RN−1RN . For, d = 2, τ2 will be R1R3, R2R4,...,RN−2RN

and finally, for, d = 3, τ2 will be R1R4, R2R5,...,RN−3RN .[17]

3.2.5 Quasi Sequence Order

Similar to SOC it also uses τd. It will have 20 + nlag size feature vector if 2 distance

matrix is used otherwise if both used then feature vector will be (20 + nlag) ∗ 2. The

first 20 features are given by,

Xr =
fr∑20

d=1 fr + w ∗
∑d

d=1 τd
, r = 1, 2, 3, ..., nlag

The next 21 to nlag features are defined by,

Xr =
wτd − 20∑20

d=1 fr + w ∗
∑d

d=1 τd
, r = 21, 22, 23, ..., 20 + nlag

Here, fr is normalized occurence of Amino Acid type r and w is the weighting factor

used as 0.1. [17]

3.2.6 PseAAC

This group of features use original properties proposed in [18, 19], which are Hydropho-

bicity Ho
1(i), Hydrophilicity Ho

2(i) and Side Chain Mass Mo(i) for i = 1, 2, ...20 for 20

Natural Amino Acids [17]. They are normalized using formula below,

9



3.2 Feature Extraction Techniques

H1(i) =
Ho

1(i)− 1
20

∑20
i=0H

o
1(i)√∑20

i=0[H
o
1 (i)−

∑20
i=0H

o
1 (i)]

2

20

Ho
2(i) and Mo(i) is normalized in a similar manner.

Next correlation function is calculated which is the average value of 3 amino acid

properties. This formula can be represented in compact summation format for more

properties.

Θ(Ri, Rj) =
1

3
{[H1(Ri)−H1(Rj)]

2 + [H2(Ri)−H2(Rj)]
2 + [M(Ri)−M(Rj)]

2}

Sequence order correlated features calculated by,

θ1 =
1

N − 1

N−1∑
i=1

Θ(Ri, Ri+1)

θ2 =
1

N − 2

N−2∑
i=1

Θ(Ri, Ri+2)

for λ order,

θλ =
1

Nλ

N−λ∑
i=1

Θ(Ri, Ri+λ)

Where, λ < N . If fi is the normalized occurence of amino acid i in protein sequence

then a set of 20 + λ features are called Pseudo Amino Acid Composition.

Xc =
fc∑20

r=1 fr + w
∑λ

j=1 θj
, (1 < c < 20)

Xc =
wθc−20∑20

r=1 fr + w
∑λ

j=1 θj
, (21 < c < 20 + λ)

3.2.7 Importance of Normalization

In all of the papers we reviewed, normalization was an integrated approach in feature

extraction. It brings different types of features to same scale. In most feature extraction

algorithms, the last step is to divide by the window size. For example, in AAC dividing

it by window size provides values between [0, 1], adding all of which gives a total of 1.

Machine learning algorithms work better when different types of features are nor-

malized respectively. If a classifier uses L2 (Euclidean) distance and the range of values

vary greatly then it will provide inconsistent results as the latter feature will dominate.
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3.3 Feature Selection

3.3 Feature Selection

3.3.1 Regularization L1, L2

Regularization helps by reducing model complexity by removing unnecessary features.

Logistic Regression with L1 feature selection only grows logarithmically in terms of

irrelevant features.

L1 regularization, uses a penalty term which encourages the sum of the absolute

values of the parameters to be small. The second, L2 regularization, encourages the

sum of the squares of the parameters to be small. It has frequently been observed

that L1 regularization in many models causes many parameters to equal zero, so that

the parameter vector is sparse. This makes it a natural candidate in feature selection

settings, where it is believed many features should be ignored. [20]

3.3.2 Mutual Information

For discrete or categorical variables, the Mutual Information(MI), I of two variables x

and y is defined in terms of their joint probability and their marginal probability. [21]

I(x, y) =
∑
i

∑
j

p(x, y)log
p(x, y)

p(x)p(y)

For continuous Random Variables,

I(x, y) =

∫
i

∫
j
p(x, y)log

p(x, y)

p(x)p(y)
dydx

3.3.3 Recursive Feature Elimination

The RFE algorithm initially fits all features to model, then each of the features are

ranked with importance to model. At each iteration top ranked features are retained.

It recursively selects features consiering smaller subsets. The least important features

are pruned until desired number of features reached. [22]

3.4 Handling Imbalanced Data

Cost sensitive learning, Biased classifier, Sampling, Hybrid Sampling are some of the

methods used to tackle imbalanced data. We propose Hybrid Sampling to improve re-

11



3.5 Workflow

sults in highly imbalanced datasets. In Hybrid Sampling both Under and Oversampling

are combined at a certain ratio such as 1:2, 1:1, 1:1.5 to achieve better results.

3.5 Workflow

Figure 3.1: Diagram of current work flow producing best results.

3.6 Summary

Initially the problem is formulated and raw data is collected. Obsolete and erroneous

data is removed before feature extraction. Next feature extraction is performed using

above mentioned methods for all train, test data.

Data imbalance affects result greatly, in order reduce that Cross validation is used

with independent test sets, various imbalance independent metrics are used, also a

combination of undersampling and oversampling is performed.
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Chapter 4

Experimental Analysis

Here, we present our findings based on various dataset presented on previous work and

our independent work on different organisms. 10 Fold Cross Validation with per fold

sampling and feature selection, as well as independent test set was used reduce the

impact of imbalance.

4.1 Datasets

4.1.1 Sprint-Mal

In this data, there are two different training set and three different test set. Each test

and training data set generated from different number of protein sequences. As original

source contained obsolete proteins and duplicate proteins, these changes are reflected

in table below.

The train ratio of mouse is 1:11, mouse test 1:21, human train 1:28, human test 1:22,

bacteria test 1:42. Cleaned dataset for human has a much different ratio distribution

than original source.

Table 4.1: Number of instances in dataset.

Dataset Name Number of Protein Malonylation Sites Non-malonylation Sites

Mouse Train 1150 3397 37854

Mouse Test 120 322 6728

Human Train 837 1554 43589

Human Test 119 207 4570

Bacteria Test 112 44 1845
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4.2 Sampling

4.2 Sampling

Random Under Sampling(RUS), randomly selects a certain amount to keep for classi-

fication and it discards the rest. SMOTE is an oversampling technique that generate

new samples based on current data points. We have found the combining these two

at certain ratio for highly imbalanced dataset works best. The majority class is first

undersampled to certain amount then minority class is oversampled to certain amount.

After sampling, in the new sampled dataset majoirty class still remains majority and

minority class still remains minority albeit in a smaller ratio than original. In our work

undersampling the majority class by 1
8 and oversampling the minority class by 1

6 gives

the best result. We call this hybrid sampling.

4.3 Selection of Classifiers

We use different kinds algorithms like ANN, SVM, Random Forest, Cart. Among These,

SVM is widely use in Bioinformatics. SVM is also very strong algorithm for predicting

binary classification problems. We choose classifier based on experimental analysis by

observing multiple parameters. Weight Balanced Random Forest was chosen as our

classification algorithm.

4.4 Optimal Window Size Selection

Choosing optimal window size is challenging. We test on 5k5, 6k6, 7k7, 8k8, 9k9,

10k10, 11k11, 12k12, 13k13, 14k14, 15k15, 16k16, 17k17, 18k18, 19k19 window size

to test model. Based on experiment in combination with our classifier and balancing

method we choose applicable window.

4.5 Performance Evaluation

In previous work computational KMal site prediction metrics such as Accuracy(ACC),

Area under the Receiver Operating Characteristics Curve(AUROC), Sensitivity(SN),

Specificity(SP), Mathew’s correlation co-efficient(MCC), Precision(Pr) are used.

For binary classifier, let us assume TP is the number of true positive or the positive

samples classified correctly, TN is the number of True Negatives or the negative samples
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4.5 Performance Evaluation

classified correctly, FP is the number of False Positives or incorrectly classified the

negative samples as positive(Type-1 error), FN is the number of False Negatives or the

positive samples incorrectly classified as negative(Type-2 error). Along with increasing

the number of TP, TN the secondary goal is to reduce FN as much as possible. The

sensitivity equation is defined as:

SN =
TP

TP + FN

The higher the value of sensitivity the more confidence for KMal site prediction.

The value of this metric varies from 0 to 1. Specificity is 1 - Sensitivity. The specificity

equation is defied as:

SP =
TN

TN + FP

Precision is the number of samples actually positive divided by the total number of

samples labled as positive. It ranges from 0 to 1. A high precision means every instance

was relevent. It is defiend as:

PR =
TP

TP + FP

Accuracy is the ratio of correctly classified instances to all instances in dataset

defied as follwing:

ACC =
TP + TN

TP + TN + FP + FN

Its range also varies from 0 to 1. Mathew’s Correlation Coefficient (MCC) is another

metric for performance evaluation. MCC is usually regarded as a balanced measure. It

ranges from -1 to +1 with -1 representing negative classification correlation and +1 as

positive classification correlation. MCC is defined as:

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
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4.6 Experimental Results

4.6 Experimental Results

Experimental results are shown on Mouse training data and Mouse independent data.

Unless otherwise mentioned above convention holds true. All result are on 21 size

window with 10 Amino Acid residues on each sides.

4.6.1 Implementation Details

The codes are implemented in Python language in combination with Scikit Learn ma-

chine learning library, as well numpy, pandas libraries. Our method is named as Hy-

brid in performance comparison to reflect Hybrid Balancing method. Class weight

balanced Random Forest Classifier is used, all RF results shown are from balanced

Random Forest Classifier. We create a server with our model for predicting Kmal sites

http://mallysml.pythonanywhere.com/.

4.6.2 Classifier Performance

Table 4.2: Classifier Comparison

10 Fold on Mouse Dataset

Classifier Name ACC AUROC AUPR MCC SN SP Kappa

Cart Train 0.7567 0.6988 0.1174 0.1588 0.4654 0.7824 0.1316

Cart Independent Test 0.780 0.7227 0.0687 0.1361 0.4829 0.7932 0.0943

ANN Train 0.6711 0.6935 0.1167 0.1580 0.5963 0.6777 0.1111

ANN Independent Test 0.676 0.7221 0.0717 0.1489 0.6700 0.6759 0.0813

AdaBoost Train 0.6886 0.6853 0.1141 0.1496 0.5547 0.7004 0.1094

AdaBoost Independent Test 0.712 0.7171 0.0706 0.1436 0.6054 0.7168 0.0850

SVM Train 0.6882 0.7067 0.1135 0.1640 0.5934 0.6961 0.1159

SVM Independent Test 0.683 0.6979 0.0604 0.1045 0.5510 0.6886 0.0589

BRF Train 0.7974 0.7220 0.1849 0.1854 0.4385 0.8290 0.1647

BRF Independent Test 0.814 0.7396 0.0752 0.1575 0.4693 0.8298 0.1179

Balanced Random Forest with ’U’,’X’ in Mouse Dataset

Classifier Name ACC AUROC AUPR MCC SN SP Kappa

BRF Train 0.7803 0.7122 0.1245 0.1756 0.4495 0.8100 0.1525

BRF Independent Test 0.785 0.7327 0.0772 0.1557 0.5093 0.7978 0.1106

Balanced Random Forest with ’U’,’X’ in Mouse Dataset without Feature Selection

Classifier Name ACC AUROC AUPR MCC SN SP Kappa

BRF Train 0.7895 0.7130 0.1247 0.1760 0.4327 0.8216 0.1556

BRF Independent Test 0.797 0.7310 0.0790 0.1613 0.5 0.8109 0.1176
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4.6 Experimental Results

4.6.3 Feature Selection Performance

Table 4.3: Under sampling at 1:1.25 Ratio comparison ANN

50 Feature

Method Name ACC AUROC AUPR MCC SN SP Kappa

MI 10 Fold 0.621 0.681 0.113 0.150 0.650 0.618 0.096

MI Independent Test 0.658 0.706 0.065 0.127 0.639 0.659 0.067

ANOVA 10 Fold 0.621 0.649 0.106 0.123 0.595 0.624 0.080

ANOVA Independent Test 0.675 0.675 0.061 0.107 0.568 0.679 0.059

100 Feature

Method Name ACC AUROC AUPR MCC SN SP Kappa

MI 10 Fold 0.634 0.699 0.116 0.159 0.650 0.633 0.104

MI Independent Test 0.720 0.715 0.066 0.128 0.557 0.727 0.077

ANOVA 10 Fold 0.626 0.672 0.109 0.135 0.612 0.628 0.088

ANOVA Independent Test 0.669 0.701 0.063 0.116 0.598 0.671 0.063

150 Feature

Method Name ACC AUROC AUPR MCC SN SP Kappa

MI 10 Fold 0.654 0.686 0.113 0.147 0.597 0.659 0.101

MI Independent Test 0.742 0.691 0.059 0.101 0.462 0.755 0.059

ANOVA 10 Fold 0.640 0.679 0.111 0.142 0.608 0.643 0.095

ANOVA Independent Test 0.734 0.695 0.062 0.114 0.503 0.744 0.071

200 Feature

Method Name ACC AUROC AUPR MCC SN SP Kappa

MI 10 Fold 0.648 0.695 0.115 0.155 0.624 0.650 0.105

MI Independent Test 0.681 0.702 0.063 0.116 0.581 0.685 0.065

ANOVA 10 Fold 0.626 0.685 0.112 0.145 0.633 0.626 0.094

ANOVA Independent Test 0.668 0.725 0.068 0.139 0.656 0.668 0.075

250 Feature

Method Name ACC AUROC AUPR MCC SN SP Kappa

MI 10 Fold 0.636 0.686 0.113 0.150 0.629 0.636 0.099

MI Independent Test 0.716 0.720 0.069 0.140 0.591 0.720 0.083

ANOVA 10 Fold 0.634 0.693 0.116 0.160 0.652 0.632 0.104

ANOVA Independent Test 0.669 0.701 0.063 0.116 0.598 0.671 0.063

17



4.6 Experimental Results

4.6.4 Sampling Performance

Table 4.4: Under sampling at 1:1 Ratio comparison ANN

Method Name ACC AUROC AUPR MCC SN SP Kappa

MI 10 Fold 0.574 0.689 0.114 0.155 0.561 0.721 0.091

MI Independent Test 0.738 0.702 0.0645 0.121 0.513 0.747 0.076

ANOVA 10 Fold 0.533 0.672 0.107 0.136 0.517 0.722 0.076

ANOVA Independent Test 0.699 0.693 0.061 0.109 0.540 0.706 0.063

Table 4.5: Over sampling at 1:1 Ratio comparison ANN

Method Name ACC AUROC AUPR MCC SN SP Kappa

ANOVA 10 Fold 0.629 0.691 0.114 0.152 0.643 0.628 0.099

ANOVA Independent Test 0.704 0.700 0.063 0.116 0.551 0.710 0.068

4.6.5 Proposed Method Results

Table 4.6: Results Comparison

Method Name ACC AUROC AUPR MCC SN SP Kappa PR

SprintMal 10 Fold 0.80 0.74 - 0.213 0.49 0.81 - -

SprintMal Ind. Test 0.90 0.76 - 0.20 0.33 0.92 - -

Result with ’U’, ’X’ residues, Balanced Random Forest, ANOVA

Hybrid 10 Fold 0.780 0.712 0.124 0.175 0.449 0.810 0.152 0.176

Hybrid Ind. Test 0.785 0.732 0.077 0.155 0.509 0.797 0.110 0.107

Result without ’U’, ’X’ residues, Balanced Random Forest, ANOVA

Hybrid 10 Fold 0.797 0.722 0.126 0.185 0.438 0.829 0.164 0.184

Hybrid Ind. Test 0.814 0.739 0.0752 0.157 0.469 0.829 0.117 0.111
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4.7 10 Fold ROC Curve Balanced Random Forest

4.7 10 Fold ROC Curve Balanced Random Forest

Figure 4.1: Diagram of current work flow producing best results.

4.8 Test Set Performance Comparison
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Figure 4.2: Comparison of Sprint-mal with our results (Rounded).
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4.9 10 Fold Performance Comparison

4.9 10 Fold Performance Comparison
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Figure 4.3: Comparison of Sprint-mal with our results (Rounded).

4.10 Summary

In this chapter we show performance of different window size selection, feature selection

methods, feature generation methods, sampling and different classifiers. From these

based on the best result we choose optimal parameters for our whole model.
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Chapter 5

Conclusion

5.1 Summary

In this work we first collected data set for Kmal. The data was cleaned to exclude

obsolete proteins. Then based on that dataset we selected the best window and good

features sets. Since data is highly imbalanced, based on experimentation we found that

hybrid sampling at a certain ratio for this data set works better. Feature selection was

done to further improve performance on the best chosen classifier.

5.2 Conclusions

A bioinformatics research is as good as its data. In two previous papers Mal-Lys,

Malopred we saw some negative peptides are labeled as positive and positives labeled

as negative. Even with our current data source there are duplicate proteins for same

human test set and overlapping same proteins in both human train, test.

Window selection is very important as a good window will have all necessary mark-

ers for good feature generation. Feature generation is also important as to encode most

information for discrimination. In our work of Kmal Enhanced Amino Acid Composi-

tion in combination with CTD features work best. For heavily imbalanced data hybrid

sampling with ratio works best. Our Hybrid sampling method undersamples majority

class by 1
8 and minority class is over sampled to 1

6 . Weight Balanced Random Forest

with 250 estimators provide the best results and classification time advantage. ANOVA

further improves the result by taking top ranked features from full feature set.
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5.3 Future Work

In previous work, most result contribution came from evolutionary and structural

information. Here, with our hybrid balancing method and only using sequential and

physicochemical features, our results are almost similar to them.

5.3 Future Work

Finding appropriate feature set with best hyper parameters is one of the important

goals. Based on that the best Hybrid balancing ratio to improve performance further

is target.

We want to create a web server with all currently available datasets to cover as much

query as possible. Also we want to apply the knowledge gained to further improve other

Protein Lysine based Modifications such as Ubiquitination, Acetylation, Succinylation,

Sumoylation, Glycation, Methylation.
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Appendix A

Classifier Description

A.1 Random Forest

Random forest is an ensemble learning method for classification. It operates by creating many

decision trees with different attributes[23].

A.1.1 Hyper-parameters

The main parameter for random forest is the forest size or number of trees. The more trees in

the forest will get better results but the computation cost will higher and also time consuming.

Type of decision tree can also impact on random forest. Gini Index tree[24] and Information

Gain tree[25] is mostly use in random forest.

A.2 Artificial Neural Networks

ANN is inspired by the biological neural networks, for example, Human Brain. ANN can be

parallelized to take advantage of GPU cores, this result huge performance gains over CPU

computed classification algorithms[26, 27]. In our work we have used feed forward multilayer

perceptron.

A.2.1 Hyper-parameters

In feed-forward neural networks, a hidden layer is a vector of many neurons, who are connected

to next layer and is not visible as the network output. The more layers added the more complex

decision boundary is created to classify data points. With more layer the computation time

increases.

Activation function defines output of a Neuron. There are multiple activation functions

such as Tanh, Relu, Sigmoid etc. Sigmoid and Tanh squeeze the values to a narrow range. As
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Appendix A. Data A.2 Artificial Neural Networks

more layers are stacked there is minor output change on large input change, this is the vanishing

problem. This problem is solved by Rectified Linear units.

Learning rate is used to reduce error rate in classification. With higher the learning rate,

it may overshoot optimal range and provide bad results. In case of low learning rate, it may

take a long time to converge.

L2 penalty can be applied to ANN to perform regularization.
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Appendix B

Acronyms

SVM: Support Vector Machine

Kmal: Lysine Malonylation

RF: Random Forest

CART: Classification and Regression Trees

SP: Specificity

SN: Sensitivity

ROC: Receiver Operating Characteristics

AUC: Area Under the Curve

MCC: Mathews Correlation Coefficient

AUPR: Area Under Precision Recall Curve

ACC: Accuracy

MI: Mutual Information

RF: Random Forest

BRF: Balanced Random Forest

SVM: Support Vector Machine

ANN: Artificial Neural Networks
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