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Abstract

In the era of growing cryptocurrency adoption, Blockchain has emerged as a

leading player in the digital payment landscape. However, this widespread

popularity also brings forth an array of security challenges, including the

need to safeguard against malicious activities. One of the paramount chal-

lenges in this regard is the detection of anomalous transactions within the

realm of Bitcoin data, a task that significantly influences the trust and

security of digital payments. Yet, it’s a formidable challenge given the rela-

tively low occurrence of anomalous Bitcoin transactions. Although several

studies have been conducted in the field, a limitation persists: the lack of

explanations for the model’s predictions. This study aims to address this

limitation by combining eXplainable Artificial Intelligence (XAI) techniques

and anomaly rules with tree-based ensemble classifiers. While deep learn-

ing techniques have demonstrated their prowess in anomaly detection, there

remains a scarcity of studies exploring their potential, particularly in the

context of Bitcoin. This study also aims to fill that gap, focusing on our

1D Convolutional Neural Network (CNN) model. To understand how our

model works and explain its decisions, we use the Shapley Additive exPla-

nation (SHAP) method, which measures each feature’s impact. We also

deal with data imbalance by exploring various methods to balance anoma-

lous and non-anomalous Bitcoin transaction data. Additionally, we have

introduced an under-sampling algorithm named XGBCLUS, designed to

balance anomalous and non-anomalous transaction data. This algorithm is

compared against other commonly used under-sampling and over-sampling

techniques. Our experimental results demonstrate that: (i) XGBCLUS

enhances TPR and ROC-AUC scores compared to state-of-the-art under-

sampling and over-sampling techniques, and (ii) our proposed ensemble clas-

sifiers outperform traditional single tree-based machine learning classifiers



in terms of accuracy, TPR, and FPR scores, and (iii) our proposed 1D CNN

model attains elevated accuracy with a concurrent reduction in the False

Positive Rate (FPR).
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Chapter 1

Introduction

Blockchain, a chain of blocks that contain the history of several transactions or records

of other applications in a public ledger, has been considered an emerging technology

both in academic and industrial areas since the last decade [1]. Bitcoin, the first

digital cryptocurrency, was proposed in 2008 and then successfully implemented by

Satoshi Nakamoto [2]. Although Blockchain was created to support the popular bit-

coin currency, transactions of other digital crypto-currencies such as Ethereum, Ripple,

Litecoin, etc., health records, transportation, IoT applications, etc. [3] are stored in

the blocks in a decentralized manner and are managed without the help of a third

party organization. Prominent attributes like trustworthiness, verifiability, decentral-

ization, and immutability have rendered Blockchain an effective integration partner for

various Information and Communication Technology (ICT) applications. Nevertheless,

this technology remains susceptible to an array of challenges, encompassing security

breaches, privacy concerns, energy consumption, regulatory policies, and issues like

selfish mining [4]. Despite its growing popularity in digital payments, Bitcoin remains

susceptible to a range of attacks, encompassing temporal attacks, spatial attacks, and

logical-partitioning attacks [5]. To ensure the effective implementation of blockchain

technology, the timely detection of malicious behavior or transactions within the net-

work, or the identification of novel instances in the data, is imperative [6].

The Bitcoin network, as the pioneering blockchain in the financial realm, has con-

fronted numerous challenges associated with illicit activities. This thesis endeavors to

identify and flag anomalous or suspicious transactions within the Bitcoin network. Swift

and appropriate measures must be taken to mitigate potential risks by incorporating

1



1.1 Motivation

Figure 1.1: A System Architecture of the Blockchain Anomaly Detection System

a real-time anomaly detection system as shown in Figure 1.1. A real-time anomaly

detection system plays a crucial role in identifying and preventing potential fraudu-

lent activities or transactions conducted digitally on the blockchain by users, thereby

preserving the blockchain system’s integrity [7]. However, the activities in the Bitcoin

network can be categorized into two main groups: user activities and transaction ac-

tivities. This thesis primarily focuses on analyzing transaction activities, particularly

in identifying and investigating suspicious behavior.

While this study primarily targets anomaly detection within the Bitcoin transaction

network, its scope extends to encompass fraud detection across various financial trans-

action blockchain systems, including Ethereum, BNB, Bitcoin Cash, and Lite Coin,

among others. Furthermore, the research broadens its focus to address anomaly de-

tection within diverse blockchain networks, spanning sectors like healthcare services,

transportation, IoT applications, and beyond. Thus, this thesis delves into the broader

challenge of anomaly detection within blockchain technology, exploring its applicability

across a spectrum of use cases and contexts.

1.1 Motivation

Within the context of blockchain systems, anomaly detection assumes paramount im-

portance. Since the dataset contains significantly fewer anomalous Bitcoin transactions

compared to legal transactions, the classifiers are biased towards the majority class

(non-anomalous transactions). Various over and under-sampling techniques have been

employed to address these imbalanced data challenges in diverse domains [8]. One

2



1.2 Objectives of the Thesis

common challenge is the potential omission of significant instances that greatly impact

model training [9]. Additionally, issues such as overfitting, sensitivity to noise, and the

introduction of bias into the dataset can reduce the performance of machine learning

models [10].

After balancing the data, selecting a machine learning classifier is another challeng-

ing task. Tree-based machine learning classifiers have been used in many studies to

classify malicious activities [11] since faster training can be performed on tree-based

classifiers [12]. However, several studies show that the ensemble method can perform

better in the case of large-scale data e.g. Bitcoin transactions than a single machine

learning algorithm [13].

In recent times, Deep Learning (DL) algorithms have emerged as a promising ap-

proach for addressing the anomaly detection challenge [14],[15], [16]. Deep Learning, a

subset of Machine Learning (ML), has gained prominence in predictive analysis [17]. In

recent times, the 1D Convolutional Neural Network (1D CNN) has garnered attention

for its swift feature extraction capabilities.

After performing all these great tasks for anomaly detection, a question can arise

”Should we trust the prediction of the Black-Box model?”. XAI, Explainable Artificial

Intelligence, is a field of interest to find the answer to this question. This latest AI tech-

nique helps to increase the explainability and transparency of the black-box AI models

by making complex interpretable decisions [18]. Two popular XAI techniques e.g. ‘Lo-

cal Interpretable Model-Agnostic Explanations’ (LIME) [19] and ‘SHapely Additive

exPlanations’ (SHAP) [20] have been used by researchers to prove the explainability

and transparency of the AI models.

1.2 Objectives of the Thesis

This study aims to create an anomaly detection system for identifying anomalous Bit-

coin transactions. To accomplish this objective, the following goals have been outlined.

• To investigate the suitability of under and over-sampling techniques in balancing

the highly imbalanced Bitcoin transaction data.

• To develop an ensemble machine learning model utilizing tree-based classifiers for

the detection of anomalous Bitcoin transactions.

3



1.3 Thesis Contributions

• To design a deep learning architecture using 1D CNN, capable of extracting sig-

nificant features from Bitcoin transaction data to accurately identify anomalous

transactions.

• To identify the crucial features that contribute significantly to the detection of

anomalous Bitcoin transactions.

1.3 Thesis Contributions

The notable contributions of this study include:

• We introduce an under-sampling algorithm based on eXtreme Gradient Boosting

(XGBoost) called XGBCLUS, and we compare it with state-of-the-art methods.

• We also explore various over-sampling and combined sampling techniques for

balancing Bitcoin transactions.

• Further, we compare the effectiveness of both under-sampling and over-sampling

techniques.

• Additionally, we propose tree-based ensemble classifiers to classify anomalous

Bitcoin transactions.

• We also compare the tree-based ensemble classifiers with the individual ML clas-

sifiers for detecting anomalous Bitcoin transactions.

• We propose a 1D CNN model designed to identify anomalous Bitcoin transactions

and assess its performance in comparison to state-of-the-art Machine Learning

(ML) algorithms.

• We explain the predictions of both the ensemble model and CNN model using

SHAP (an eXplainable Artificial Intelligence technique) and identify the crucial

features that exert the most influence on classifying Bitcoin transactions.

• Lastly, we present a set of rules derived from a tree-based model to provide

explanations for anomalous transactions.

4



1.4 Organization of the Thesis

1.4 Organization of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 introduces initial concepts relevant to this thesis and conducts a thorough

review of existing literature on anomaly detection in several cryptocurrencies,

identifying notable research gaps.

Chapter 3 outlines our proposed anomaly detection approach, employing a combi-

nation of ensemble machine learning and deep learning models, integrated with

both under-sampling and over-sampling techniques.

Chapter 4 provides a comprehensive comparative analysis of results between machine

learning and deep learning models, including the explainability and anomaly rules.

Chapter 5 wraps up the thesis by summarizing key discoveries and discussing on

future research scopes.

5



Chapter 2

Background Study and Related

Works

In this chapter, foundational concepts are introduced to provide a comprehensive under-

standing of the thesis. Key topics covered include Bitcoin anomalies, machine learning,

and deep learning. Additionally, recent efforts in anomaly detection are explored, shed-

ding light on their limitations and underscoring the research gaps that this thesis seeks

to address.

2.1 Bitcoin Transactions

Bitcoin is a decentralized digital currency that operates on a peer-to-peer network,

allowing users to send and receive payments without the need for a central author-

ity or intermediary [21]. Its significance in digital payments lies in offering a secure,

transparent, and borderless means of transferring value globally. As a pioneer in the

world of cryptocurrencies, Bitcoin has garnered widespread attention for its potential

to revolutionize traditional financial systems.

However, the Bitcoin blockchain operates under specific rules, notably the limit of

21 million bitcoins. Illustrated in Figure 2.1, each transaction undergoes encryption

using the sender’s private key. This encrypted transaction is then accompanied by

a digital signature and the public key of the receiver before being forwarded to the

recipient’s address. Such encryption ensures secure delivery to the intended recipient

and facilitates verification using the digital signature. Moreover, the anonymity of

6



2.1 Bitcoin Transactions

Figure 2.1: Basic Bitcoin Transaction

the sender and receiver is maintained, as they can generate new addresses for each

transaction. Bitcoin transactions may include multiple inputs and outputs, with users

specifying the destination address and amount sent, encapsulated within the transaction

output to prevent double-spending.

Figure 2.2 presents a sample sub-network extracted from network T. Transaction

t1, executed on May 1, 2011, involves one input and one output. One of t1’s outputs

entails transferring 1.2 BTC (Bitcoins) to a user identified by public-key pk1. The

figure does not depict the public keys. Transaction t2, conducted on May 5, 2011,

comprises two inputs and two outputs. Among t2’s outputs is a transfer of 0.12 BTC

to a user identified by public-key pk2. Transaction t3, added to the ledger on the same

day as t2, also includes two inputs and one output. The inputs of t3 are linked to the

outputs of both t1 and t2. T3 itself has only one output, t4, which transferred 1.32

BTC on May 5, 2011.

Recent statistics on Bitcoin payments underscore its growing adoption. The in-

creasing number of merchants and businesses accepting Bitcoin reflects a shift toward

recognizing it as a legitimate form of payment. Additionally, the rise in the total value

of Bitcoin transactions and the expanding user base contribute to its prominence in the

digital economy [22]. However, with the surge in popularity, challenges such as security

concerns, regulatory issues, and the potential for illicit activities have emerged [23].

7



2.2 Anomalies and Their Effects in Blockchain Technology

Figure 2.2: A sub-network representing Bitcoin transactions

2.2 Anomalies and Their Effects in Blockchain Technol-

ogy

Anomalies in Bitcoin transactions refer to atypical or irregular patterns in the flow of

digital currency, deviating from expected behaviors. These anomalies may signify po-

tential fraudulent activities, security breaches, or other irregularities in the blockchain

network [24]. Blockchains are heralded for their promise of privacy and security in

financial architecture. Yet, despite the perception of being impregnable, certain indi-

viduals have managed to circumvent this supposedly foolproof infrastructure. These

perpetrators typically aim to conduct illicit activities covertly, either by covering their

tracks or by completely deceiving the system to appear legitimate.

While many smaller-scale incidents may go unreported, larger ones often make

headlines. Bitcoin, as the pioneering and oldest financial blockchain, has faced its

share of challenges related to illegal activities. For instance, Reid and Harrigan et al.

documented a notable Bitcoin theft dubbed ’All In Vain,’ where approximately 25,000

bitcoins were stolen [25]. Additionally, a victim known as Stone-Man [26] shared their

harrowing experience on a Bitcoin forum, recounting the loss of 8,999 bitcoins due to

the exploitation of their original private key. This victim had initially purchased 9,000

bitcoins from an exchange, transferring them to a disc and also backing them up on

8



2.2 Anomalies and Their Effects in Blockchain Technology

a USB flash drive. Curiously, the victim also initiated a single Bitcoin transfer to

another address for unknown reasons. Upon confirming and securing all wallet data,

the victim discovered an unauthorized transaction of 8,999 bitcoins to an unfamiliar

address, which they had not authorized.

Moreover, The most significant financial debacle in the Bitcoin world occurred with

the collapse of Mt. Gox, the leading Bitcoin exchange at the time, in 2014 [27]. Led

by CEO Mark Karpelès, a French national operating from Japan, Mt. Gox served as

the primary platform for buying and selling Bitcoins from its inception in 2010 until

February 2014. However, in a startling announcement, Mt. Gox revealed that 850,000

bitcoins had disappeared, presumably stolen by hackers. At the prices prevailing in

early 2014, these bitcoins were valued at approximately $450 million. Today, their

worth would soar to $8.5 billion. In January 2015, Bitstamp, a well-known Bitcoin

exchange, disclosed a loss of approximately 19,000 bitcoins, valued at about $5 million

at the time [28]. Despite the setback, the exchange managed to weather the attack and

continues to maintain its position as one of the leading Bitcoin exchanges today. In

August 2016, Bitfinex, a Bitcoin exchange, revealed that hackers had absconded with

$77 million worth of bitcoins [29]. To mitigate the impact, the company transferred

the financial burden onto its users, compelling them to accept a 36-percent reduction

in the value of their deposits.

These instances exemplify certain behaviors that raise suspicion. Therefore, we

can identify similar activities and behaviors as anomalies and aim to develop a model

capable of detecting them. Bitcoin has gained notoriety for its association with illicit

activities on the dark web, including money laundering, drug trafficking, and arms

dealing. Individuals have exploited the technology to facilitate transactions for illegal

goods and services on platforms like the online black market ’Silk Road,’ which operated

on the dark web since 2011. According to Christin et al., [30], Silk Road generated a

monthly revenue of approximately 1.2 million USD.

According to the Crystal Hacks Report [31], the yearly average number of security

breaches and frauds involving cryptocurrencies remained relatively low, at less than 12,

from 2011 to 2018. However, the total stolen funds saw a significant increase, averaging

about $11.6 million per year during the same period. The situation took a drastic turn

in 2019, with 26 reported incidents resulting in $3.5 billion in losses. Subsequent years

witnessed further escalations, with 32 incidents and $1.49 billion in losses in 2020, 94
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incidents and $4.63 billion in losses in 2021, and 120 incidents and $2.14 billion in losses

in 2022. These rising instances of fraudulent activities and hacking pose a threat to the

cryptocurrency ecosystem, potentially dampening investor confidence and impacting

cryptocurrency pricing and trading.

Recent statistics show that the detection of these anomalies is crucial for main-

taining the integrity and security of Bitcoin transactions, with advancements in ma-

chine learning and deep learning techniques playing a pivotal role in enhancing the

accuracy and efficiency of anomaly detection systems. As the popularity of Bitcoin

continues to grow, addressing and understanding these anomalies becomes increasingly

vital for ensuring the trustworthiness of digital payment systems. This thesis lever-

ages the transactional data from a widely accessible financial blockchain, Bitcoin, due

to its availability and extensive academic literature. The data undergoes thorough

preprocessing, followed by the application of various modeling techniques to detect

transactions associated with theft, heists, or money laundering.

2.3 Labelling of Anomalous Bitcoin Transactions

The raw data obtained from the Bitcoin client underwent a filtering process based on the

year parameter to extract a specific subset. Utilizing a Python script, approximately

29,000,000 transactions spanning the years 2011 to 2013 were isolated from the dataset

to be used in this thesis. The rationale behind selecting this particular timeframe stems

from the presence of anomalous Bitcoin transaction data during this period. Notably,

certain transactions within these years were flagged as anomalous, as documented by

regulatory entities such as the Bitcoin Forum. This platform maintains a comprehensive

record of BTC fraud transactional activities, including incidents categorized as BTC

Thefts, BTC Hacks, and BTC Losses. Each flagged transaction contains pertinent

details such as the date of occurrence and the amount of BTC involved.

Finally, The dataset of anomalies was curated by extracting data from the Bitcoin

Forum (2014) using a custom Python crawler. This process enabled the compilation of

a dataset specifically focused on anomalous Bitcoin transactions. To accurately label

malicious transactions within the dataset, a tagging technique was employed. Specif-

ically, any transaction identified as malicious resulted in all subsequent transactions
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involving the same BTC being labeled as malicious as well. This cascading effect en-

sured comprehensive coverage of potentially fraudulent activities associated with the

initial malicious transaction.

2.4 Tree-Based ML Models

2.4.1 Decision Tree

A Decision Tree classifier is a popular machine learning algorithm used for both classifi-

cation and regression tasks. It builds a tree-like structure of decisions based on features

to make predictions [32]. The decision tree starts with a root node, representing the

entire dataset. It then splits the data into subsets based on feature values to create

child nodes. Each node represents a decision or test on a feature such as indegree,

in btc, out btc, total btc, mean in btc, and mean out btc. Decision Trees use different

criteria to determine the best feature and value to split the data at each node. Two

common criteria are Gini Impurity and Information Gain (Entropy). The tree contin-

ues to split the data into subsets, creating child nodes until a stopping condition is

met. This condition could be a predefined tree depth or a minimum number of samples

required in a node. When a stopping condition is reached, the final nodes are called

leaf nodes or terminal nodes. Each leaf node represents a class label i.e. Anomalous

or non-Anomalous. To make predictions, data samples traverse the tree from the root

node, following the decisions at each node, until they reach a leaf node. The class label

associated with the leaf node is the prediction.

2.4.2 Gradient Boosting

The Gradient Boosting classifier is an ensemble Machine Learning technique used for

both classification and regression tasks. It is powerful and often achieves high pre-

dictive accuracy. This tree-based classifier combines the predictions of multiple weak

learners, typically decision trees, to create a strong predictive model [33]. Gradient

Boosting starts with an initial base learner, often a decision tree, to make predictions.

It calculates the residuals (the differences between the actual and predicted values) for

each data point in the training set using the current model’s predictions. A new weak

learner (usually another decision tree) is trained to predict the residuals. The goal

is to fit this new learner to the residuals to capture the errors made by the previous
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model. The predictions of the new learner are weighted and added to the predictions

of the previous model. The weights are determined by a learning rate that scales the

contribution of each new model. Residual calculation and weighted addition steps are

repeated for a predefined number of iterations or until a certain performance metric is

met. The final prediction is obtained by summing up the predictions of all the models,

effectively creating a weighted combination of the weak learners’ predictions. Gradient

Boosting aims to minimize a loss function e.g. Cross-Entropy Loss for Bitcoin anomaly

classification during the iterative process.

2.4.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an advanced ensemble machine learning algo-

rithm known for its high predictive accuracy and efficiency. Its efficient implementation

and ability to handle missing values, feature importance analysis, and early stopping

make it a popular choice for various Machine Learning tasks [34]. XGBoost optimizes

an objective function that combines a loss function (log loss for classification) and a

regularization term. The model in XGBoost is represented as an ensemble of decision

trees, where each tree is a weak learner. The final prediction is the weighted sum of

predictions from all the trees. It employs a gradient boosting approach for constructing

trees. At each iteration, it fits a new tree to the negative gradient of the loss function,

which is a measure of how far off the current predictions are from the true values.

Trees are added sequentially, with each new tree correcting the errors made by the

previous ones. It also provides regularization techniques to prevent overfitting. Trees

are pruned during training if they do not provide sufficient reduction in the objective

function. This helps to avoid overfitting and contributes to model efficiency. This clas-

sifier uses gradient boosting to minimize the objective function. The gradients of the

loss function with respect to the model predictions are calculated for each data point,

and the trees are constructed to reduce these gradients.

2.4.4 Adaptive Boosting

AdaBoost’s strength lies in its ability to focus on the most challenging data points

by assigning higher weights to misclassified samples. It creates a strong classifier by

boosting the performance of weak learners and is less prone to overfitting [35]. Initially,

each data point in the training set is assigned an equal weight. These weights represent
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the importance of each data point in the classification. AdaBoost trains a base learner

(a weak classifier) on the training data. The goal of the base learner is to perform

slightly better than random guessing. The base learner’s performance is evaluated

based on the weighted classification error. High-performing base learners are assigned

higher weights, indicating their importance in the ensemble. AdaBoost updates the

weights of the training samples to focus more on the misclassified samples. AdaBoost

combines the predictions of all base learners by weighted majority voting. The final

prediction is the result of a weighted sum of the base learners’ predictions.

2.4.5 Random Forest

The Random Forest classifier is one of the most popular and widely used ensemble

machine learning algorithms that is widely used for both classification and regression

tasks. The strength of Random Forest lies in its ability to reduce overfitting, handle

noisy data, and provide estimates of feature importance. The ensemble of decision

trees, each trained on a different subset of data and features, collectively improves the

model’s predictive performance and generalization [36]. This classifier starts by creating

multiple decision trees. Each tree is trained on a random subset of the original dataset,

sampled with replacement. This process is called bootstrapped sampling, and it helps

create diverse and unique trees. In addition to sampling data points, Random Forest

randomly selects a subset of features for each tree. This randomness ensures that each

tree focuses on different subsets of data and features, reducing the risk of overfitting.

Each decision tree in the Random Forest is constructed using a portion of the data

and a subset of features. The trees are grown recursively by selecting the best feature

and split point to partition the data. This process continues until a stopping criterion,

such as an Anomalous or non-anomalous leaf node, is reached. For the classification

of Bitcoin transaction data, the Random Forest combines the predictions of individual

trees through a majority voting mechanism.

2.5 Convolution Neural Network(CNN)

A Convolutional Neural Network (CNN) was originally crafted for processing two-

dimensional data, specifically tailored for tasks like image processing. Its fundamental
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architecture encompasses essential components such as convolutional, pooling, activa-

tion, and fully connected layers. A 1D Convolutional Neural Network (CNN) is used

to extract hierarchical features from sequential data.

Figure 2.3: Architecture of 1D CNN

2.5.1 Convolutional Layer

The pivotal component in a CNN is the convolutional layer, responsible for the majority

of computational tasks within the network. Input images undergo transformation into

tensors with a given shape, serving as input to this layer. The convolutional layer

conducts a dot product operation with a 2D matrix known as a kernel, filter, or feature

detector, traversing receptive fields across the input. The kernel, characterized by

learnable parameters or weights, is smaller in spatial dimensions than the input image

and is updated during training. Moving with a fixed stride, the kernel performs dot

products, generating output matrices referred to as feature maps or activation maps

through the convolution process. These feature maps, representing convolved features,
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are then transmitted to subsequent layers. Additional convolutional layers, including

the initial one, can be incorporated. Following each convolution, a Rectified Linear Unit

(ReLU) activation function is applied to the feature map, introducing nonlinearity to

the model. For an input of size (Wi ×Hi) and a kernel of size (Wk ×Hk) with stride

S, the size of the output matrix Wc can be determined by the following formula:

Wc =

(
Wi −Wk

S
+ 1,

Hi −Hk

S
+ 1

)

Figure 2.4: Convolution operation using 3X3 filter.

2.5.2 Pooling Layer

Pooling layers play a crucial role in reducing dimensionality, mitigating computational

load, and preventing overfitting in CNNs. Their function involves downsampling or

reducing the spatial dimensions of feature maps, serving as an effective noise suppressor.

Similar to convolution, pooling operations utilize a kernel that traverses the height and
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width of the input, but unlike convolution, this kernel lacks weights. Two common

types of pooling are employed: max pooling and average pooling. Max pooling extracts

the maximum pixel value from each partition of the input image covered by a kernel,

while average pooling calculates the average values from each partition. These pooling

operations contribute to dimensionality reduction and noise suppression in the overall

network architecture.

Figure 2.5: Max Pooling and Average Pooling using 2X2 filter

2.5.3 Fully Connected Layer

The fully connected layer receives the flattened output matrix from the previous layer,

establishing connections between every neuron in the preceding layer and those in

the subsequent layer, akin to multilayer perceptrons. This mapping helps refine the

representation between the input and output. In the output layer, a Softmax activation

function is applied for input classification, assigning probability scores ranging from 0

to 1 to different classes.
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2.6 Explainable AI

Explainable Artificial Intelligence (XAI) is a field of study aimed at making machine

learning models more transparent and interpretable [18]. It enables users to understand

how models make predictions, thus building trust and aiding in decision-making pro-

cesses. Two popular methods used for XAI are SHAP (SHapley Additive exPlanations)

and LIME (Local Interpretable Model-agnostic Explanations).

SHAP is a game-theoretic approach based on Shapley values from cooperative game

theory. It assigns each feature in a prediction a Shapley value, indicating its contribu-

tion to the final prediction [20]. By analyzing these values, users can understand which

features have the most significant impact on model predictions and how they interact

with each other.

On the other hand, LIME is a model-agnostic method that explains individual pre-

dictions by fitting a simpler interpretable model locally around them [19]. It generates

perturbed samples around the instance of interest and observes how the model behaves

with these perturbations. By analyzing the changes in predictions, LIME provides

insights into why a model made a particular prediction for a given instance.

Both SHAP and LIME offer valuable insights into the inner workings of machine

learning models, allowing users to understand complex model decisions and identify po-

tential biases or errors. These methods play a crucial role in ensuring the transparency

and accountability of AI systems across various applications and domains.

Despite numerous studies in the field of anomaly detection in Blockchain transac-

tions, a significant limitation remains: the absence of explanations for the predictions

made by the models. This study endeavors to overcome this limitation by integrating

eXplainable Artificial Intelligence (XAI) techniques. These techniques are crucial for

providing interpretable insights into the decision-making process of anomaly detection

models operating within Blockchain transactions. By leveraging XAI methodologies,

this research seeks to enhance transparency and understanding, thus contributing to

more reliable and accountable anomaly detection systems in the realm of Blockchain

technology.
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2.7 Related Studies

Researchers have focused on detecting or predicting anomalous transactions using the

concept of blockchain intelligence [37]. This involves the incorporation of Artificial In-

telligence (AI) for anomaly detection and fraud detection within blockchain transaction

data. Both Machine Learning (ML) and Deep Learning (DL) techniques, along with

a range of balancing methods, have been employed to identify fraudulent transactions

within blockchain transaction data. While previous studies have primarily focused on

using supervised and unsupervised algorithms for classifying illicit transactions within

Bitcoin transaction data, a limited number of studies have addressed data balancing

methods. However, the issue of class imbalance presents challenges when it comes to

classifying or detecting anomalies in areas related to illicit activities in digital curren-

cies, money laundering, etc. [38]. To address this concern, researchers have put forth

various undersampling and oversampling methods to assess their impact on improving

evaluation metrics.

2.7.1 Machine Learning Techniques

In their study [39], the authors delved into the Bitcoin ecosystem to assess the extent

of illicit activities, including ransomware attacks, scams, and the illegal trade of goods,

among others. They aimed to categorize these activities and determine the predomi-

nant share of cybercrime within the Bitcoin ecosystem. Additionally, the study sought

to identify the number of fraudulent addresses and quantify the volume of Bitcoin

transactions associated with these illicit activities. The research highlighted Bagging

and Gradient Boosting as the most effective models for classifying the five categories of

cybercrime activities. Furthermore, the experimental results were presented visually.

However, it’s worth noting that one of the key limitations of their work was the ab-

sence of proper balancing techniques to fine-tune the models. Singh et al. [40] utilized

SVM, Decision Tree, and Random Forest classifiers to identify anomalies within the

Ethereum network. When operating based on the dataset’s ground truth, they suc-

cessfully detected 47 anomalous transactions out of 50 positive cases. However, upon

considering indegree nodes as fraudulent cases, they were able to identify 49 positive

cases. Additionally, they included outdegree nodes as positive cases but could only

identify a single anomalous case. It’s important to note that a notable limitation of
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this study is that it examined only a small subset of the dataset and did not employ

any balancing techniques. The authors in [41] employed five distinct supervised ma-

chine learning classifiers, namely Random Forest, Adaptive Boosting, MLP, SVM, and

KNN, to identify instances of Bitcoin transaction theft. Among these classifiers, the

Random Forest (RF) classifier demonstrated the highest performance, achieving an F1

value of 0.952. Furthermore, the authors asserted that their top-performing model

surpassed the performance of other unsupervised algorithms, specifically Mahalanobis

Distance, LOF, and OCSVM. Notably, they enhanced their experimental results by

introducing balance to the training data through the utilization of the SMOTE over-

sampling method. In the study [42], the authors employed active learning tools to

identify illicit activities within Bitcoin transaction data using machine learning clas-

sifiers. Remarkably, by utilizing only 5% of the labels, they asserted that their pro-

posed method had surpassed state-of-the-art unsupervised methods in the detection

of anomalous behavior. Additionally, the authors conducted a comparative study, as

outlined in [43], to differentiate between non-anomalous and anomalous transactions

within the Bitcoin ecosystem. Their findings revealed that ensemble-based methods

outperformed common machine learning models in terms of accuracy and F1-score

evaluation metrics. In their paper [44], the authors employ multiple Machine Learning

models to identify anomalous transactions in various digital currency markets. Their

findings indicate that supervised learning techniques produce promising results, while

unsupervised learning techniques face more challenges when it comes to classification.

In [45], the authors have conducted a comparative analysis of Bitcoin and Ethereum

transaction data using various under and over-sampling techniques. Notably, their

customized nearest-neighbor under-sampling method has achieved an impressive 99%

accuracy, outperforming several SMOTE-based over-sampling techniques. They also

have applied popular supervised algorithms to classify anomalies in both transaction

datasets. In a separate study detailed in [46], the authors have explored ensemble-based

classifiers for detecting fraudulent activities in bank transactions. They have investi-

gated the effectiveness of numerous up-and-down sampling techniques. Among these

techniques, SVM SMOTE for dataset balancing, combined with the Random Forest

classifier, has emerged as the most promising combination. It’s important to note that

both studies primarily aimed to evaluate the performance of different data sampling

methods in their respective contexts.
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2.7.2 Deep Learning Techniques

The paper [47] discusses the limitations of traditional machine learning techniques,

such as One-Class Support Vector Machine and Isolation Forest, in identifying anoma-

lies in Ethereum transactions. It points out that these techniques struggle to capture

the internode or account relationship information within transactions. To address this

issue, the authors propose the utilization of a One-Class Graph Neural Network-based

anomaly detection framework tailored for Ethereum blockchain network analysis. Em-

pirical evaluations conducted in the study illustrate that this proposed method outper-

forms traditional non-graph-based machine learning algorithms in terms of anomaly

detection accuracy. In [48], the authors introduce a novel approach for Bitcoin trans-

action analysis to detect potential money laundering anomalies. It leverages a com-

bined method, integrating random forests with information from a graph convolutional

network. The model’s results suggest the presence of possible shadow transactions,

estimated at 2-3% of the total market. The study in [49] presents a deep learning-

based anomaly detection model in the financial sector, employing Long Short-Term

Memory (LSTM), Gated Recurrent Unit (GRU), and one-dimensional Convolutional

Neural Network (1dCNN) algorithms. Hyperparameter optimization is performed us-

ing the grid search method, and the methods are applied to Tesla’s stock market and

Ethereum cryptocurrency datasets. The comparative analysis reveals that the GRU

algorithm achieves the highest prediction score in both datasets, while the 1dCNN

algorithm performs the least effectively. Furthermore, graphical representations of

anomaly values using the GRU algorithm are showcased for both datasets. The au-

thors in [50] address the identification of illegal transactions in the Bitcoin network

by extracting nineteen features and proposing a deep learning-based graph neural net-

work model. The model is compared to graph attention network (GAT2) and extreme

gradient boosted decision tree (XGBOOST) techniques, utilizing a dataset comprising

13,310,125 transactions from 2,059 entities across 3,152,202 Bitcoin account addresses

and 28 user categories. Two experiments are conducted: binary classification for le-

gal or illegal transactions and multi-class classification to determine the transaction

originator’s category. The proposed models achieve up to 92% accuracy in both tasks,

demonstrating their effectiveness for real-world deployment. A one-dimensional CNN

model for network anomaly detection in cybersecurity is introduced by the authors
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in [51]. It categorizes network traffic data into TCP, UDP, and OTHER protocols,

addressing class imbalance through over-sampling after feature selection using the Chi-

square technique. The model achieves weighted average F-scores of 0.85, 0.97, 0.86,

and 0.78 for TCP, UDP, OTHER, and ALL categories, respectively, and is tested on

the UNSW-NB15 dataset. In [52], the authors have devised an encoder-decoder-based

deep learning model to detect anomalous activities within the Ethereum transaction

network. Their work marks a pioneering effort in employing deep learning techniques,

along with some feature engineering, to identify illicit activities within the Ethereum

network. On the other hand, the authors in [53] employ both clustering and role detec-

tion methods to identify suspicious users within Bitcoin transaction data. K-means is

utilized for clustering, while RoIX is employed for role detection. However, it’s worth

noting that their approach primarily categorizes anomalous activities without providing

a quantitative measure for them.

While previous studies focused on employing supervised and unsupervised algo-

rithms solely for classifying illicit transactions in blockchain transaction data, limited

attention has been given to addressing class imbalance. This imbalance poses chal-

lenges in detecting anomalies in areas such as illicit activities in digital currencies,

money laundering, and various single or multi-class classifications [38]. To tackle this

issue, researchers have introduced various undersampling and oversampling methods

aimed at enhancing evaluation metrics. In studies [54] to [55], SMOTE over-sampling

balancing methods have been applied to classify illegal activities in credit card trans-

actions. Additionally, studies by the authors of [56] and [57] have explored various

under-sampling techniques to distinguish between normal and illegal activities in credit

card transactions. In a different context, the authors [58] have addressed the challenge

of handling highly imbalanced datasets by employing several undersampling techniques

for early product back-order prediction.

2.8 Research Gap

In many instances, the frequency of anomalous data points significantly pales in com-

parison to that of non-anomalous data points, thereby yielding imbalanced datasets.

Such skewed data distribution can exert an adverse impact on the efficacy of anomaly
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detection algorithms. These algorithms, often biased towards the majority class (nor-

mal data), grapple with difficulties in accurately discerning the minority class (anoma-

lous data). Several Over and Under-sampling techniques such as Synthetic Minority

OverSampling Technique (SMOTE), Adaptive Synthetic (ADASYN), Random Under

Sampling (RUS), Near-Miss, etc. have been used to handle imbalanced data in var-

ious domains[8]. A major problem in most of the under-sampling algorithms is that

significant instances which have a great impact on model training may be missed [9].

Tree-based machine learning classifiers have been used in many studies to classify mali-

cious activities [11] since faster training can be performed on tree-based classifiers [12].

However, several studies show that the ensemble method can perform better in the case

of large-scale data e.g. Bitcoin transactions than a single machine learning algorithm

[13]. In recent times, the 1D Convolutional Neural Network (1D CNN) has garnered

attention for its swift feature extraction capabilities, making it a preferred choice for

anomaly detection [59], intrusion detection [60], and fault detection [61] across various

domains. Despite its proven efficacy in these applications, there is a notable scarcity

of studies harnessing the potential of the 1D CNN model for anomaly detection within

Blockchain transaction data. Finally, a key limitation is the lack of explanations for

the model’s predictions and human interpretability.

2.9 Summary

This chapter provides an overview of various approaches documented in the literature

for detecting or classifying anomalies in Blockchain, emphasizing their limitations and

identifying potential research gaps. The subsequent chapter delves into our proposed

methodology, leveraging both machine learning and deep learning techniques. It details

the experimental outcomes and engages in a comprehensive discussion of the results.
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Chapter 3

Proposed Method

The initial phase involved dataset collection and subsequent preprocessing. Following

this, the dataset was split into training and test data partitions. Notably, data sampling

was exclusively applied to the training data, while the test data remained independent.

The sampled data was utilized for training both machine learning classifiers and the

Proposed deep learning model. Ultimately, independent test data was employed to

validate the models, utilizing a range of evaluation metrics including Accuracy, TPR,

FPR, and ROC-AUC score. Furthermore, the study incorporates a comparative anal-

ysis, complemented by eXplainable Artificial Intelligence (XAI) techniques and rules

from Decision Tree, which are elaborated upon in the results section. The overall

methodology of this study is illustrated in Figure 3.1.

3.1 Dataset

The Bitcoin transaction data utilized in this study was sourced from the IEEE Data

Portal 1. The period from 2011 to 2013 was chosen due to the accessibility of anomalous

Bitcoin transaction data during this timeframe. The Bitcoin Forum contains a wealth

of information on fraudulent BTC transactional activities, including incidents catego-

rized as BTC Thefts, BTC Hacks, and BTC Losses. Each case highlights red-flagged

transactions, providing insights into the date and the amount of BTC stolen or lost.

The raw Bitcoin data undergoes a transformation process to imbue it with mean-

ing and structure, with fraudulent transactional cases serving as labels. Parsing the

1https://ieee-dataport.org/open-access/.bitcoin-transactions-data-2011-2013

23



3.1 Dataset

Figure 3.1: Methodology of this study

transactional data from these raw files results in a representation resembling a directed

graph structure. As outlined by [25], this data is logically interconnected and can be

visualized as a transaction network, denoted as T. In this network, each vertex repre-

sents a transaction, while directed edges between a source and destination encapsulate

details such as the number of bitcoins and the timestamp of the transaction. These

directed edges originate from the input of the transaction and extend towards the cor-

responding target output. The authors [62] utilized a previously generated CSV file

along with the transaction graph to construct a directed acyclic graph (DAG). Within

this DAG, each vertex symbolized a transaction, characterized by distinct indegree and

outdegree values, as well as specific quantities of bitcoins (BTC) inflowing and outflow-

ing. Traversing the DAG facilitated the extraction of features, which were subsequently

integrated into a dataset. During the traversal of the DAG, each transaction underwent

labeling as either anomalous or non-anomalous, thereby culminating in the creation of

a final dataset comprising metadata extracted from the DAG.

The features in Table 3.2 were extracted from the DAG. Indegree represents the
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count of transactions from which a specific transaction receives Bitcoins and Outdegree

represents the count of transactions for which a specific transaction sends Bitcoins. The

total amount of bitcoins received through incoming edges to a transaction is denoted as

in btc whereas out btc denotes the total amount of bitcoins sent through outgoing edges

from a transaction. out and tx malicious indicates whether a transaction is flagged as

malicious or not. All other features such as total btc, mean in btc, mean out btc, etc.

were generated from these basic features applying summation or average or counting.

This dataset comprises a total of 30,248,134 samples, with the majority, specifically

30,248,026, being labeled as negative samples, denoting non-malicious transactions.

In stark contrast, there are only 108 samples labeled as malicious. This dataset ex-

hibits a significant class imbalance, emphasizing the scarcity of malicious instances.

Exploratory Data Analysis (EDA) was conducted to gain insights into the dataset’s

characteristics. It encompasses 12 attributes, with each transaction being assigned a

label indicating its status as anomalous (labeled as 1) or non-anomalous (labeled as

0). A correlation matrix of the features is shown in Figure 3.2. Features such as

Table 3.1: The T-values and P-values for all attributes

Attribute t value p value

indegree -14.013838 0.000000

outdegree 0.842249 0.399648

in btc -17.229753 0.000000

out btc -16.469202 0.000000

total btc -16.864202 0.000000

mean in btc -8.727102 0.000000

mean out btc -16.014732 0.000000

in malicious -68.869826 0.000000

out malicious -5432.702805 0.000000

is malicious -3878.622465 0.000000

all malicious -1866.899584 0.000000

in btc, out btc, total btc, mean in btc, and mean out btc exhibit strong positive cor-

relations. Conversely, the indegree and outdegree features display weak correlations.

While in malicious, out malicious, is malicious, and all malicious features are notably

correlated with the output feature out and tx malicious, no substantial correlations
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are observed between these features and indegree, outdegree, in btc, out btc, total btc,

mean in btc, and mean out btc. Furthermore, a hypothesis test for feature selection

Figure 3.2: Correlations among the features using Heatmap

was conducted using the T-test to explore the correlations between positive (anomalous

Bitcoin transactions) and negative (non-anomalous Bitcoin transactions) samples. The

T-test assesses whether a significant difference exists between the means of the positive

and negative samples. T-statistic values and corresponding p-values were computed for

each attribute, as presented in Table 3.1. Notably, all attributes exhibited significance

with p-values below 0.01, except for outdegree. It’s also important to mention that all

features (in malicious, out malicious, is malicious, and all malicious) share the same

value range as the target feature out and tx malicious. Consequently, this similarity

poses a challenge for ML classifiers in effectively distinguishing Bitcoin transactions,

leading to the exclusion of these four features and outdegree. As a result, a set of seven

features, including the target feature, was selected for classification. A summary of

the selected features is presented in Table 3.2. After completing the feature selection
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3.2 Imbalanced Data Handling

Table 3.2: Summary of the selected features

Feature Name description

Indegree No. of inputs for a given transaction

in btc No. of Bitcoins on each incoming edge to a given transaction

out btc No. of Bitcoins on each outgoing edge from a given transaction

total btc Total number of Bitcoins for a given transaction

mean in btc Average number of Bitcoins on each incoming edge to a given transaction

mean out btc Average number of Bitcoins on each outgoing edge from a given transaction

out and tx malicious Status of a given Bitcoin transaction if it is malicious or not

Figure 3.3: Class ratio

process, the dataset was partitioned into negative and positive samples, with a spe-

cific focus on eliminating duplicate entries exclusively from the negative samples. To

manage computational complexity, a decision was made to retain only 200,000 nega-

tive samples, while maintaining the 108 positive samples. However, it’s important to

note that this choice still resulted in a significantly high imbalance ratio, as depicted

in Figure 3.3.

3.2 Imbalanced Data Handling

In Bitcoin transactions, the number of illicit transactions is significantly lower than that

of normal transactions, leading to an imbalanced dataset. Consequently, machine learn-
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3.2 Imbalanced Data Handling

ing classifiers tend to exhibit bias toward the majority class [63]. While classification

accuracy might appear satisfactory in many cases, a notable discrepancy between True

Positive and False Positive values often arises—indicating that the models struggle to

accurately classify anomalies. To address this, it is crucial to balance the dataset using

built-in or customized sampling techniques prior to training the classification models.

In scenarios involving anomaly detection, fraud identification, or money laundering,

positive cases are typically scarce. As such, undersampling techniques can prove effec-

tive in rebalancing the dataset while prioritizing accurate identification of positive cases.

However, in instances where the number of positive cases or anomalies in the minority

class is exceedingly low, ML classifiers may be trained on a limited dataset generated

by the undersampling technique. On the other hand, over-sampling methods aim to

increase the instance count of the minority class to match that of the majority class.

Despite generating artificial data based on a combination of majority and minority

samples, these methods can be effective. In our study, we introduce an under-sampling

algorithm named XGBCLUS, and we also investigate established under-sampling tech-

niques such as Random Under Sampling (RUS) and Near-Miss. Furthermore, we ex-

plore popular over-sampling techniques including SMOTE, ADASYN, as well as com-

bined approaches like SMOTEENN and SMOTETOMEK. We present a comparison

between over-sampling and under-sampling methods in the Result Analysis Section.

3.2.1 Under-Sampling Techniques

We have investigated two under-sampling methods e.g. Random Under Sampling and

Near-Miss along with our proposed under-sampling method which is described in Sec-

tion 3.2.1.1. Random Under Sampling (RUS) is a simple technique used to handle class

imbalance in datasets. It randomly selects a subset of instances from the majority class.

The size of this subset is determined based on the desired balance ratio between the

minority and majority classes. The balance ratio αus is defined by Equation 3.1.

αus =
Nm

Nrm
(3.1)

where Nm is the number of samples in the minority class and Nrm is the number of

samples in the majority class after resampling. Then, the instances from both the

minority class and the randomly selected subset of the majority class instances are
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3.2 Imbalanced Data Handling

combined to form a balanced dataset. Another under-sampling technique namely Near-

Miss is also used for balancing the dataset. It reduces the imbalance by retaining a

subset of instances from the majority class that are close to instances from the minority

class. This down-sampling technique selects instances based on their proximity to the

minority class, making it possible to preserve important samples. For each instance in

the minority class, Near-Miss calculates its distances to all instances in the majority

class using various distance metrics such as Euclidean distance or Manhattan distance.

After that, this algorithm identifies the k instances from the majority class that are

closest to each instance in the minority class. The value of k is typically set as a

hyperparameter and determines the degree of under-sampling. We set the value as 1

and hence we call it Near-Miss-1. Finally, it combines the instances from both the

minority class and the selected instances from the majority class to form an under-

sampled dataset.

3.2.1.1 Proposed XGBCLUS Algorithm

XGBCLUS (eXtreme Gradient Boosting-based Clustering) operates by merging clusters

( accomplished by selecting random instances from the majority class in the training

data, equal in number to the positive instances from the minority class) and the Extreme

gradient Boosting algorithm. The algorithm starts with splitting the whole dataset into

train and test data. The test data is kept independent and the positive samples, P,

are counted from the training set. Then, the number of iterations, k, is calculated

by dividing the total number of negative samples in the training data by the positive

samples, P.

In each iteration, the algorithm arbitrarily selects n negative samples equal to P

and a new training set is prepared to train the Xgboost model. Using the independent

test set, the model predicts the True Positive (TP) and False Positive (FP) values.

The values of TP and FP values are compared with TMAX and FMIN, respectively.

TMAX and FMIN are initialized with arbitrary values where the TMAX represents

the maximum true positive value and the minimum false positive value is defined by

FMIN. If the TP value is greater than the TMAX value and the value of FP is less than

the FMIN value, then both TMAX and FMIN are updated with the TP and FP values

respectively. At the same time, current n samples are updated in the Selected Samples

set. Otherwise, no changes are made in the current iteration.
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3.2 Imbalanced Data Handling

Algorithm 1 XGBCLUS algorithm

Input: Imbalanced Training samples, DATA; Number of iterations, k ; Number of pos-

itive samples,P ; The independent test data and The XGBoost algorithm.

Output: Selected Under-Sampled data

0: Initialize TMAX and FMIN

0: Initialize an empty set Selected Samples

0: for i = 1 to k do

0: Select n negative samples arbitrarily equal to P and Prepare the Train data

0: Train the model and predict using the test samples

0: Calculate True Positive (TP) and False Positive (FP) values

0: if TP > TMAX and FP < FMIN then

0: Set TMAX = TP and FMIN = FP

0: Update current n samples in Selected Samples

0: end if

0: end for

0: if Selected Samples is empty then

0: Goto step 3 and repeat the steps 3 - 13 after changing TMAX and FMIN values

0: end if

0: Return Selected Samples;

=0
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3.2 Imbalanced Data Handling

After the k iterations are finished, the Selected Samples set is checked. If the

set is empty, the algorithm should be run again with new TMAX and FMIN values.

Otherwise, the samples in the Selected Samples set are the under-sampled data returned

by the algorithm. The XGBClus algorithm is shown in Algorithm 1.

3.2.2 Over-Sampling Techniques

In our investigation, we have explored two commonly used over-sampling techniques to

address class imbalance in Bitcoin transaction data. Between these two methods, the

Synthetic Minority Over-sampling Technique (SMOTE) stands out as a widely adopted

approach for mitigating the class imbalance problem [64], particularly in the context

of Bitcoin Transactions for anomaly detection. The core objective of SMOTE is to

rectify the class distribution imbalance by creating synthetic instances of the minority

class. This process helps alleviate bias issues and enhances the generalization of the

model. For each minority sample Xi, SMOTE randomly selects k nearest neighbors

from the same class. Subsequently, a new sample Xn is generated using one of the

nearest neighbors Xzi from the set of k neighbors. The generation of the new sample

follows the equation 3.2.

Xn = Xi + λ ∗ (Xzi −Xi) (3.2)

Where λ represents a random number ranging from 0 to 1. Consequently, a new syn-

thetic instance is created within the feature space. This process iterates until the num-

ber of samples in both the majority and minority classes becomes equal. Ultimately, the

original minority instances are combined with the newly generated synthetic instances

to establish a balanced dataset.

ADASYN [65] (Adaptive Synthetic Sampling) employs the same formula as men-

tioned earlier for generating new samples, with the exception being the selection of Xi.

ADASYN focuses on enhancing the density of synthetic instances in regions that pose

greater classification challenges, offering a more nuanced approach to addressing class

imbalance. For each minority instance, ADASYN initially calculates the number of its

k nearest neighbors that belong to the majority class, providing an indication of the

proximity of the minority sample to the majority class. Subsequently, it calculates the

imbalance ratio αos for each minority instance using the equation 3.3.

αos =
Nrm

Nm
(3.3)
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3.2 Imbalanced Data Handling

Here, Nrm represents the number of samples in the minority class after resampling,

and Nm denotes the number of samples in the majority class. This imbalance ratio

is employed to determine the desired count of synthetic instances to be generated for

the current minority instance. Additionally, a difficulty ratio is calculated to assess the

level of difficulty. When this ratio is high, more neighbors are considered for generating

synthetic instances. By interpolating feature values between the minority instance and

its selected neighbors, a new synthetic instance is generated. This process continues for

all minority instances until the number of samples in both the majority and minority

classes is equalized. Ultimately, the original minority instances are merged with the

newly generated synthetic instances to construct a balanced dataset.

3.2.3 Combined-Sampling Techniques

Additionally, we have explored two combined sampling strategies to address class imbal-

ance in Bitcoin transaction data. SMOTEENN [66] is a combination of two resampling

techniques: SMOTE (Synthetic Minority Over-sampling Technique) and Edited Near-

est Neighbors (ENN). This approach is designed to address the class imbalance by

initially generating synthetic samples using SMOTE and subsequently enhancing the

dataset quality through the application of ENN. The primary goal of SMOTEENN

is to provide a more sophisticated approach to balancing imbalanced datasets while

concurrently improving dataset quality by eliminating potential noise. Following the

generation of synthetic instances via SMOTE, ENN operates as follows: for each in-

stance in the dataset, ENN identifies its k nearest neighbors. If the instance’s class

differs from the majority class of its neighbors, ENN removes the instance from the

dataset, effectively eliminating noisy or misclassified instances.

Another combined resampling technique is SMOTETOMEK [67], where synthetic

instances are produced using SMOTE, and the under-sampling technique TOMEK Link

identifies pairs of instances from different classes that are closest to each other. For

each pair of instances identified as Tomek links, the majority class instance is removed.

This undersampling method assists in eliminating instances that are in close proximity

to the decision boundary and may be prone to misclassification. The outcome is a more

balanced, discriminative, and effective dataset for training machine learning models.
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3.3 Proposed Ensemble Model

The meta-classification ensemble method based on stacked generalization is a Machine

Learning (ML) approach used to improve the accuracy of predictions by combining

multiple models [68]. The stacking-based ensemble model is formed by two classifiers.

One is the base classifier and the other is the meta classifier. It starts with training

a set of base models using several classifiers. A new dataset is found from the base-

level classifiers and then the meta-classifier, also known as a combiner or a blender, is

trained using the new dataset. After that, the learned meta-classifier is used to predict

the independent test dataset. The architecture of the proposed stacked-ensemble model

is shown in Figure 4.

Figure 3.4: Stacked-Ensemble Model architecture

In our proposed stacking-based ensemble model, Random Forest (RF), Decision

Tree (DT), Gradient Boosting (GB), and Adaptive Boosting (AdB) have been used

as the base models. The training dataset is used to train the base models and the

outputs of the four base models along with the validation fold are combined to create

a new dataset. Then Logistic regression (LR) [69], which is the meta-classifier in our

proposed model, receives the newly formed dataset by combining the predictions of the

base classifiers as input and learns on that input set. Finally, the test dataset has been

used to predict anomalous and non-anomalous transactions.
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On the Other side, the Voting Classifier is constructed using only tree-based models,

which are a family of machine learning algorithms known for their robustness and

interpretability. The architecture of a Voting Classifier that incorporates tree-based

models like Decision Trees (DT), XGBoost (XGB), Gradient Boosting (GB), Random

Forest (RF), and AdaBoost (ADB) is shown in Figure 5. The Voting Classifier takes

the training set as input and the ensemble is constructed by combining the predictions

of several individual tree-based models. Each model in this context refers to a unique

instantiation of the tree-based algorithm with a specific set of hyperparameters or

configurations. After the Voting Classifier has been trained and evaluated, it is used

to make predictions on test data. The Voting Classifier aggregates the predictions

of each individual tree-based model using a voting mechanism. The voting can be

either ”hard” or ”soft”. In hard voting, each model in the ensemble casts a single

vote for the predicted class label, and the majority class receives the final prediction.

For soft voting, the probabilities (confidence scores) of each model’s predicted classes

are averaged, and the class with the highest average probability is chosen as the final

prediction.

Figure 3.5: Voting-Ensemble Model architecture

3.4 Proposed 1D CNN

The 1D CNN architecture, as shown in Figure 3.6, is designed to extract and transform

features from Bitcoin transaction data through convolutional layers, normalize activa-
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tions with batch normalization, reduce spatial dimensions with max-pooling, and make

a binary classification decision in the output layer. It encompasses various layers and

techniques to balance model complexity and performance while preventing overfitting,

ultimately serving as a robust tool for detecting fraudulent transactions within Bitcoin

data.

The feature extraction process begins with Conv1D layers, two in total, each serving

a unique purpose. These layers apply convolutional operations to the input sequences,

enabling them to capture intricate patterns and representations. The first Conv1D

layer is responsible for extracting important features from the input data (6, 1) where

6 represents the length of the input sequence and 1 for the dimension of each feature

(usually 1 for scalar values). It uses 32 filters to scan the input data with a kernel size

of 3, allowing it to capture local patterns within the input sequence. It is also followed

by a Rectified Linear Unit (ReLU) activation function to introduce non-linearity. The

second Conv1D layer follows a similar pattern but utilizes 64 filters, thereby enabling

the extraction of increasingly complex patterns from the data.

Figure 3.6: Architecture of proposed 1D CNN model

Batch Normalization layers are strategically placed after each Conv1D layer to stabi-

lize and accelerate the training process. These layers normalize the activations produced

by the convolutional layers, ensuring they have a mean of 0 and a standard deviation

of 1. This normalization is pivotal in improving training stability and convergence.

To reduce the spatial dimensions of the feature maps while retaining essential in-

formation, a MaxPooling1D layer is incorporated. This layer effectively halves the

sequence length, thus reducing computational complexity and retaining the most sig-

nificant information present in the data. The flattened layer follows the MaxPooling1D
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layer, reshaping the 3D tensor output into a 1D vector. This transformation prepares

the data for processing by the fully connected layers, ensuring compatibility between

the convolutional and dense layers.

Layer
Kernel

Size

No. of

Filters
Activation

Output

Shape
Parameters

Conv1D 3 32 relu (None, 4, 32) 128

BatchNormalization (None, 4, 32) 128

Conv1D 3 64 relu (None, 2, 64) 6,208

BatchNormalization (None, 2, 64) 256

MaxPoolling1D 2 (None, 1, 64) 0

Flatten (None, 64) 0

Dense relu (None, 128) 8,320

Dense sigmoid (None, 1) 129

Total Parameters 15,169

Table 3.3: Details of the Layers of the Proposed CNN Model

The architecture employs two dense (fully connected) layers for classification. The

first dense layer consists of 128 neurons and incorporates the ReLU activation function.

Additionally, it applies dropout regularization with a 50% dropout rate, which helps

mitigate overfitting. The second dense layer functions as the output layer, housing a

single neuron, and uses the sigmoid activation function for binary classification. This

layer is responsible for making the final prediction regarding the nature of the Bitcoin

transaction. Details of the Layers of the Proposed model are given in Table 3.3.

Learning Rate 0.0001

Optimizer Adam

Batch Size 32

Loss Function binary crossentropy

Table 3.4: Parameters for Model Compilation

For optimization, we employed the Adam stochastic gradient descent method with a

learning rate of 0.0001. During training, binary cross-entropy was utilized to compute

the loss. A batch size of 32 was employed, implying that 32 samples were used per

gradient update. A list of parameters used for model compilation is given in Table 3.4.
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Given the approximately 320,000 samples in the training set, this resulted in (320,000 ÷

32) = 10,000 (approximately) steps needed per epoch to iterate over the entire training

set. Initially, we used 100 epochs for training our proposed CNN model and monitored

the accuracy and loss updates for both the training and validation sets. The number of

epochs was determined using the early stopping technique with a patience of 10 epochs

to restore the model’s best weights to mitigate overfitting.

3.5 Evaluation metrics

Given that accuracy alone is insufficient to gauge the performance of an anomaly de-

tection system, it becomes crucial to employ additional metrics such as True Positive

Rate (TPR) to assess the accurate identification of anomalous transactions and False

Positive Rate (FPR) to evaluate the correct identification of non-anomalous transac-

tions. This aligns with the primary objective of our study. The evaluation metrics e.g.

accuracy, True Positive Rate (TPR), and False Positive Rate (FPR) have been used

to compare the performance of the single models without and with balancing the data

against the proposed ensemble models. Additionally, we also use the feature impor-

tance score to show the hierarchy of the features. We have also considered the Receiver

Operating Characteristic (ROC) score, which compares the True Positive Rate (TPR)

against the False Positive Rate (FPR). The performance metrics are defined below:

TP = True Positive: an anomalous transaction is correctly identified as anomalous

TN = True Negative: a non-anomalous or normal transaction is correctly identified as

non-anomalous

FP = False Positive: a non-anomalous transaction is incorrectly identified as anomalous

FN = False Negative: an anomalous transaction is incorrectly identified as non-anomalous

Accuracy =
TP + TN

TP + TN + FP + FN
(3.4)

TPR = Sensitivity =
TP

TP + FN
(3.5)

TNR = Specificity =
TN

TN + FP
(3.6)

FPR =
FP

TN + FP
(3.7)

AUC is calculated as the Area Under the Sensitivity(TPR) - (1−Specificity)(FPR)

Curve.
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3.6 Summary

This chapter provides an overview of our proposed methodology, leveraging both ma-

chine learning and deep learning techniques. The subsequent chapter delves into details

of the experimental outcomes and engages in a comprehensive discussion of the results.
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Chapter 4

Experimental Analysis

In this chapter, we assess the performance of the proposed ensemble models using both

under-sampled and over-sampled data. Additionally, a comprehensive comparative

analysis between single classifiers and ensemble classifiers is presented herein. Addi-

tionally, we evaluate the proposed 1D CNN model, considering both oversampled and

combined sampled data. Furthermore, we present a comprehensive comparative analy-

sis between the performance of machine learning classifiers and the proposed 1D CNN

model. We commence by configuring the experimental environment and subsequently

present outputs that scrutinize various facets of the model’s performance concerning

Bitcoin anomaly detection.

4.1 Environment Setup

We employed the Python programming language for implementation and utilized Jupyter

Notebook for executing all modules. The computational tasks benefited from the ca-

pabilities of Google Colab, which leveraged 12.68 GB of RAM and 225.83 GB of disk

space for enhanced hardware support. A suite of libraries and packages played integral

roles in diverse tasks: Pandas facilitated data extraction, Matplotlib enabled visual-

ization and plotting, Numpy performed various mathematical functions, Scikit-learn

handled tasks such as binarizing output, dataset splitting, and generating classification

reports and confusion matrices, Keras was instrumental in building models using the

TensorFlow library, Seaborn was employed for plotting confusion matrices, and shap

contributed to explaining the model’s output.
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4.2 Effects of Under-Sampling in Classification with ML

We have kept 20% data for the independent test set and the remaining 80% has been

used for training the models. To prove the data imbalanced problem, the classifiers have

been trained without balancing the train set. The ML classifiers become biased to the

majority samples and result in a high true negative value. However, the ML classifiers

can not identify the positive samples correctly that’s why the true positive rate is very

low and in some cases, it is zero. Table 4.9 shows the comparison of accuracy, True Pos-

itive (TP), and roc-auc score of the Decision Tree (DT), Gradient Boosting (GBoost),

Random Forest (RF), and Adaptive Boosting (AdaBoost) classifiers. The TP values

are zero for DT and RF classifiers which indicates that no anomalous transactions are

correctly identified and all transactions are classified as normal transactions. Although

the accuracy seems to be good enough for the classifiers, the TP score tends to zero

i.e. anomalous transactions are not identified because of the biases of models to the

majority of transactions. Given that detecting anomalous transactions is the primary

objective of our study, classifiers may struggle to identify those transactions without

balanced data. Therefore, we explored several balancing techniques to enhance the

True Positive Rate (TPR) and decrease the False Positive Rate (FPR) values.

Table 4.1: Comparison among the classifiers without balancing the data

Classifiers Accuracy TPR AUC-Score

DT 0.99 0.0 0.55

GBoost 0.99 0.09 0.62

RF 0.99 0.0 0.72

AdaBoost 0.99 0.05 0.82

In Figure 4.1, the confusion matrices illustrate the performance of the ensemble

classifier under different under-sampling methods, namely Random Under Sampling

(RUS), Nearmiss1, and XGBClus. Notably, the True Positive (TP) values exhibit an

increase compared to scenarios without balancing, where TP values are consistently

zero. However, it is essential to discern that, despite the improvements in TP, the

False Positive (FP) values show variations among the under-sampling methods. Specif-

ically, Nearmiss1 displays a relatively higher FP count compared to RUS and XGBClus,
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(a) (b)

(c) (d)

Figure 4.1: Confusion Matrix for (a) Without Balancing, (b) Ensemble classifier with

RUS, (c) Ensemble classifier with NearMiss1, (d) Ensemble classifier with XGBClus

even though the FP is zero in the absence of balancing. The XGBClus undersam-

pling method proposed in our study outperforms the existing method by achieving the

highest True Positive (TP) value along with relatively low False Positive (FP) values.
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This superiority stems from our algorithm’s approach of considering all instances in

downsampling, whereas existing algorithms randomly select instances, leading to the

omission of important cases.

Given that the TPR or sensitivity signifies the count of correctly classified posi-

tive transactions, down-sampling techniques were explored to equalize the numbers of

normal and anomalous transactions. We employed XGBCLUS, our proposed under-

sampling method, in conjunction with other established techniques for downsampling.

Figure 4.2 illustrates that the sensitivity values for all single and ensemble ML classifiers

witnessed an increase, except for the NearMiss-1 under-sampling algorithm. Notably,

the sensitivity values for both single and ensemble classifiers utilizing the XGBCLUS

algorithm stand at 0.82, 0.86, 0.86, 0.81, 0.86, 0.81, and 0.91, respectively. These val-

ues exceed the sensitivity values obtained without balancing and those from random

under-sampling techniques.

While the NearMiss-1 undersampling technique yields a higher sensitivity value

compared to the XGBCLUS method, the corresponding FPR value is markedly high,

as demonstrated in Table 4.14. As the False Positive Rate (FPR) decreases, the True

Negative Rate (TNR) increases, indicating the correct identification of non-anomalous

transactions. The NearMiss-1 undersampling technique exhibits a higher FPR, suggest-

ing its limitation in accurately identifying non-anomalous transactions. In contrast, the

random undersampling method produces average FPR values, although they are higher

than the FPR values of XGBClus. In terms of TPR and FPR values, XGBClus out-

performs other undersampling techniques.

Table 4.2: FPR of ML classifiers after Under-Sampling

Classifiers Random Undersampling NearMiss 1 XGBCLUS

DT 0.26 0.99 0.18

GBoost 0.26 0.99 0.19

RF 0.20 0.99 0.16

AdaBoost 0.26 0.99 0.21

Ensemble (Stacked) 0.22 0.99 0.15

Ensemble (Hard-Voting) 0.21 0.99 0.14

Ensemble (Soft-Voting) 0.21 0.99 0.17

42



4.2 Effects of Under-Sampling in Classification with ML

Figure 4.2: Comparison of TPR or sensitivity values using under-sampling methods

Figure 4.3 illustrates the enhanced ROC-AUC scores obtained through the utiliza-

tion of under-sampled data. Notably, the proposed XGBCLUS undersampling tech-

nique outperforms RUS and Near-Miss in terms of ROC-AUC scores. The Gradient

Boosting (GBoost) classifier achieves the highest ROC-AUC score of 0.92, which stands

as the peak among all single and ensemble classifiers. Furthermore, the remaining clas-

sifiers achieve ROC-AUC scores ranging from 0.85 to 0.91. This range indicates that

the true positive and false positive rates adhere to their expected levels.

Figure 4.3: Improved ROC-AUC value using XGBClus
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4.3 Effects of Over-Sampling in Classification with ML

Although the TPR scores have increased for all ML classifiers following the under-

sampling of data, the FPR values remain unsatisfactory. The objective is to elevate

the True Positive (TP) rate while reducing the FP rate. To achieve this balance, var-

ious over-sampling and combined methods have been applied to balance the training

data. In Figure 4.4, the confusion matrices depict the performance of the ensemble clas-

sifier when employing various over-sampling methods, including SMOTE, ADASYN,

SMOTEENN, and SMOTETOMEK. Notably, the True Positive (TP) values exhibit

a decrease compared to the results obtained with under-sampling techniques. Despite

this reduction in TP values, it is crucial to observe that the False Positive (FP) val-

ues have also shown a decrease when contrasted with the figures achieved through

under-sampling methods.

Table 4.3 demonstrates that FP rates have decreased for both individual and ensem-

ble ML classifiers. However, the attained TP rates have reduced. Among all classifiers,

AdaBoost (AdB) attains the highest TPR score of 0.59 with the SMOTETOMEK sam-

pling technique, while the Ensemble Hard-Voting (EHV) classifier secures the lowest

FPR value of 0.03 i.e. only 3% across all over-sampling methods. The remaining ML

classifiers, including Ensemble-Stacked (ES) and Ensemble Soft-Voting (ESV), achieve

FPR scores of either 0.04 or 0.05, except for the Decision Tree (DT), Gradient Boost-

ing (GB), and AdaBoost which record the higher FPR values between 0.06 and 0.08.

Moreover, All the ML classifiers have achieved an average TPR value of about 50%

except the Random Forest (RF) which scores the lowest TP rate of 0.23.

Turning to ROC-AUC scores with oversampling techniques, Table 4.4 displays the

performance of all ML classifiers. Among all classifiers, AdaBoost secures the highest

ROC-AUC values, ranging from 0.80 to 0.85. Conversely, the DT classifiers exhibit

the lowest ROC-AUC scores with oversampled data. The ADASYN over-sampling

technique demonstrates superior performance compared to other sampling methods,

yielding favorable ROC-AUC values for all ML classifiers within the range of 0.71

to 0.83. overall, the ADASYN over-sampling technique shows a better performance

compared to other over and combined sampling methods.
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(a) (b)

(c) (d)

Figure 4.4: Confusion Matrix for (a) Ensemble classifier with SMOTE, (b) Ensemble

classifier with ADASYN, (c) Ensemble classifier with SMOTEENN, (d) Ensemble classifier

with SMOTETOMEK
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4.4 Comparative Analysis between Undersampling and Oversampling
methods with ML classifiers

Table 4.3: Comparison between TPR and FPR values of ML classifiers after Over-

Sampling

SMOTE ADASYN SMOTEENN SMOTETOMEK

TPR FPR TPR FPR TPR FPR TPR FPR

DT 0.41 0.06 0.41 0.06 0.36 0.06 0.41 0.05

GB 0.45 0.07 0.55 0.06 0.59 0.07 0.50 0.07

RF 0.23 0.04 0.32 0.04 0.36 0.04 0.23 0.04

AdB 0.59 0.08 0.59 0.08 0.55 0.08 0.59 0.08

ES 0.32 0.04 0.41 0.05 0.36 0.04 0.23 0.04

EHV 0.36 0.03 0.36 0.03 0.36 0.04 0.36 0.03

ESV 0.27 0.04 0.36 0.04 0.36 0.04 0.32 0.04

Table 4.4: ROC-AUC Scores after Over-Sampling the data

Classifiers SMOTE ADASYN SMOTEENN SMOTETOMEK

DT 0.59 0.58 0.56 0.59

GBoost 0.77 0.79 0.78 0.84

RF 0.71 0.71 0.71 0.71

AdaBoost 0.83 0.83 0.80 0.85

Ensemble (Stacked) 0.63 0.75 0.75 0.65

Ensemble (Hard-Voting) 0.63 0.75 0.75 0.6

Ensemble (Soft-Voting) 0.63 0.75 0.75 0.6

4.4 Comparative Analysis between Undersampling and

Oversampling methods with ML classifiers

Both under-sampling and over-sampling techniques exert distinct effects on Blockchain

anomaly detection. Under-sampling methods address the minority class instances by

selecting an equivalent number of instances from the majority class through various

distance-based techniques [70]. Conversely, over-sampling methods originate from the

majority class instances and craft an equal number of synthetic instances from the

minority class using different distance techniques [71]. Both sampling techniques yield

varying impacts on the classification of Bitcoin transaction data. A comprehensive

comparative analysis is detailed from Table 4.5 to Table 4.8. The confusion matrices in

figure 4.1 and 4.4 suggest a nuanced trade-off between true positives and false positives,

emphasizing the importance of a comprehensive evaluation of the model’s performance
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under different sampling strategies.

Table 4.5 showcases that TPR scores are relatively higher for under-sampling meth-

ods such as Random Under Sampling (RUS) and the proposed XGBCLUS method,

compared to over-sampling and combined sampling methods. Conversely, over-sampling

and combined techniques surpass under-sampling methods in terms of FPR scores.

Among under-sampling methods, XGBCLUS secures the highest TPR value of 0.91,

which also stands as the pinnacle across all under-sampling, over-sampling, and com-

bined techniques. Among over and combined balancing methods, the highest TPR

value is 0.59 achieved through SMOTETOMEK. Under-sampling methods prove more

effective than over-sampling methods in increasing True Positive (TP) rates. With

Under-sampling methods, Machine Learning classifiers can accurately identify a larger

portion of anomalous transactions.

In terms of FPR scores as shown in Table 4.6, the best value of 0.03 is achieved

across all over-sampling and combined methods. However, under-sampling methods

yield a modest FPR score of 0.14 with XGBCLUS. Over-sampling methods prove more

effective than under-sampling methods in reducing False Positive (FP) rates. With

over-sampling methods, Machine Learning classifiers can accurately identify a larger

portion of non-anomalous transactions.

Figure 4.5 depicts that all ML classifiers exhibit improved ROC-AUC scores using

the XGBCLUS under-sampling method, outperforming the scores achieved through the

ADASYN over-sampling technique. This suggests that under-sampling methods excel

over over-sampling methods in terms of ROC-AUC scores.

Table 4.5: TPR or Sensitivity of ML classifiers after Under-Sampling and Over-Sampling

Under Sampling Over Sampling Combined Sampling

RUS XGBCLUS SMOTE ADASYN SMOTEENN SMOTETOMEK

DT 0.64 0.82 0.41 0.41 0.36 0.41

GB 0.64 0.86 0.45 0.55 0.59 0.55

RF 0.68 0.86 0.23 0.32 0.36 0.23

AdB 0.72 0.81 0.59 0.59 0.55 0.64

ES 0.64 0.86 0.32 0.41 0.36 0.23

EHV 0.64 0.81 0.36 0.36 0.36 0.36

ESV 0.68 0.91 0.27 0.36 0.36 0.32
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Table 4.6: FPR of ML classifiers after Under-Sampling and Over-Sampling

Under Sampling Over Sampling Combined Sampling

RUS XGBCLUS SMOTE ADASYN SMOTEENN SMOTETOMEK

DT 0.26 0.18 0.06 0.06 0.06 0.05

GB 0.26 0.19 0.07 0.06 0.07 0.07

RF 0.20 0.16 0.04 0.04 0.04 0.04

AdB 0.26 0.21 0.08 0.08 0.08 0.08

ES 0.22 0.15 0.04 0.05 0.04 0.04

EHV 0.21 0.14 0.03 0.03 0.04 0.03

ESV 0.21 0.17 0.04 0.04 0.04 0.04

Table 4.7: Accuracy of Single and Ensemble classifiers after Under-Sampling and Over-

Sampling

Under Sampling Over Sampling Combined Sampling

RUS XGBCLUS SMOTE ADASYN SMOTEENN SMOTETOMEK

DT 0.74 0.82 0.94 0.94 0.94 0.94

GB 0.74 0.81 0.93 0.94 0.93 0.93

RF 0.80 0.83 0.96 0.96 0.96 0.96

AdB 0.74 0.79 0.92 0.92 0.92 0.92

ES 0.78 0.85 0.96 0.95 0.96 0.96

EHV 0.79 0.86 0.96 0.97 0.96 0.97

ESV 0.79 0.83 0.96 0.96 0.96 0.96

4.5 Effects of Ensemble Classifiers

While a single tree-based ML classifier can identify both anomalous and non-anomalous

transactions, stacked and voting classifiers have been implemented to mitigate issues

related to errors and overfitting. As demonstrated by the experimental results in Table

4.8, ensemble classifiers exhibit superior performance compared to individual tree-based

models, particularly for accuracy and FPR values.

Table 4.7 showcases the enhanced test accuracy of the three ensemble methods in

comparison to single classifiers. The voting (hard) classifier attains the highest accuracy

of 97%, which stands as the peak value across all single classifiers. Among the ensemble

classifiers, the voting (soft) classifier secures the highest TPR or sensitivity value of 0.91

when utilizing under-sampled data from the XGBCLUS method. Concerning the FP

rate, the voting (hard) classifier achieves the best value of 0.03, capitalizing on the

XGBCLUS under-sampling technique.

With oversampled data, although the TPR values for the three ensemble classifiers

exhibit a minor decline, the voting (hard) classifier attains the best FPR value of 0.03.
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4.5 Effects of Ensemble Classifiers

(a)

(b)

Figure 4.5: ROC-AUC curves for all models after (a) Under-Sampling with XGBCLUS,

(b) Over-Sampling with ADASYN

Furthermore, ensemble classifiers prove effective in reducing the False Positive (FP)

rate, thereby enhancing the correct identification of non-anomalous transactions. The

voting (hard) classifier outperforms the other two ensemble methods by securing the

highest accuracy of 0.97, alongside a commendable ROC-AUC score of 0.75.
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Table 4.8: Evaluation metrics after Under-Sampling and Over-Sampling with test data

Under Sampling Over Sampling

Classifier Acc TPR/Sensitivity FPR ROC-AUC Acc TPR/Sensitivity FPR ROC-AUC

DT 0.82 0.82 0.18 0.85 0.94 0.41 0.05 0.58

GB 0.81 0.86 0.19 0.92 0.94 0.55 0.06 0.79

RF 0.83 0.86 0.16 0.90 0.96 0.36 0.04 0.71

AdB 0.79 0.81 0.21 0.87 0.92 0.59 0.08 0.83

ES 0.86 0.91 0.14 0.91 0.97 0.41 0.03 0.75

4.6 Impact of sampling in detection with 1D CNN

We also trained our proposed CNN model on the unbalanced training set, leading

to a bias towards the majority class. Consequently, the model displayed a high true

negative rate but faced challenges in correctly identifying positive samples i.e. the

Bitcoin anomalous transactions, resulting in zero true positives.

While keeping the test set independent, we balanced the training set using various

sampling techniques, including SMOTE, ADASYN oversampling methods, as well as

SMOTEENN and SMOTETOMEK combined sampling techniques. Subsequently, the

CNN model was trained on each of the sampled datasets. For optimization, we em-

ployed the Adam stochastic gradient descent method with a learning rate of 0.0001.

During training, binary cross-entropy was utilized to compute the loss. A batch size of

32 was employed, implying that 32 samples were used per gradient update. Given the

approximately 320,000 samples in the training set, this resulted in (320,000 ÷ 32) =

10,000 (approximately) steps needed per epoch to iterate over the entire training set.

Initially, we used 100 epochs for training our proposed CNN model and monitored the

accuracy and loss updates for both the training and validation sets. The number of

epochs was determined using the early stopping technique to mitigate overfitting.

Table 4.9 provides a comparison of accuracy, TPR or Sensitivity, and ROC-AUC

score for the Decision Tree (DT), Gradient Boosting (GBoost), Extreme Gradient

Boosting (XGBoost), Random Forest (RF), Adaptive Boosting (AdaBoost), and 1d

CNN classifiers. Notably, the TPR scores were zero for DT, XgBoost, RF, and 1D

CNN, indicating that no fraudulent transactions were correctly identified; instead, all

transactions were classified as non-fraudulent. Although GBoost and AdaBoost classi-

fiers displayed a low TPR, their scores approached zero. This suggests that fraudulent
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transactions remained undetected due to the models’ bias towards the majority class

i.e. non-fraudulent transactions.

Table 4.9: Comparison among the classifiers without balancing the data

Classifiers Accuracy TPR AUC-Score

DT 0.99 0.0 0.55

GBoost 0.99 0.09 0.62

XgBoost 0.99 0.0 0.85

RF 0.99 0.0 0.72

AdaBoost 0.99 0.05 0.82

1D CNN 0.99 0.0 0.49

As we trained our proposed CNN model on the unbalanced training set, the model

displayed a high true negative rate but faced challenges in correctly identifying positive

samples i.e. the Bitcoin fraudulent transactions, resulting in zero true positive rate.

While keeping the test set independent, we balanced the training set using various

sampling techniques, including SMOTE, ADASYN oversampling methods, as well as

SMOTEENN and SMOTETOMEK combined sampling techniques. Subsequently, the

CNN model was trained on each of the sampled datasets.

Table 4.10 illustrates that the CNN model’s accuracy remains consistent across

different sampled datasets. Among these datasets, the CNN model with SMOTE over-

sampling exhibits the highest True Positive rate (0.36), emphasizing its effectiveness in

identifying fraudulent Bitcoin transactions. In contrast, the CNN model with SMO-

TEEEN demonstrates the best FPR score (0.0008), indicating its capability to detect

all non-fraudulent transactions i.e. True Negative rate is almost 100%. Remarkably,

the ROC-AUC scores for the CNN model remain consistent across all sampled datasets.

These results are achieved after certain epochs based on early stopping. Overall, the

effectiveness of the proposed CNN model is evident in reducing the False Positive Rate

(FPR) with both over and combined sampling methods, despite the True Positive Rate

(TPR) not meeting the desired level.

While early stopping was implemented to mitigate overfitting issues, we additionally

conducted a run of the CNN model for 100 epochs to assess potential improvements

in the results. Table 4.11 presents the evaluation metrics, including accuracy, FPR,
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Table 4.10: Comparison of evaluation metrics between Over and Combined sampling

with 1D CNN

Model Accuracy TPR/Sensitivity FPR AUC-Score

CNN+SMOTE 0.98 0.36 0.02 0.76

CNN+ADASYN 0.99 0.27 0.005 0.83

CNN+SMOTEENN 0.99 0.27 0.0008 0.76

CNN+SMOTETOMEK 0.98 0.32 0.02 0.78

and TPR, for both cases. Notably, the TPR or Sensitivity has increased in all mod-

els, except for CNN+SMOTETOMEK, which remains constant when trained for 100

epochs. However, there is a significant increase in False Positive Rate when using

100 epochs, indicating a trade-off between FPR and TPR. The validation accuracy

has generally decreased, with the exception of CNN+SMOTETOMEK, which exhibits

a slight increase after 100 epochs. This behavior suggests that the model oscillates

between focusing on non-fraudulent and fraudulent transactions, leading to increased

False Positive (FP) values despite improvements in True Positive (TP) values. The

models stopped training at different epochs: 48, 36, 41, and 31 for CNN+SMOTE,

CNN+ADASYN, CNN+SMOTEENN, and CNN+SMOTETOMEK, respectively.

Table 4.11: Comparison of the results with and without callback

Early Stopping 100 epochs

Model Accuracy FPR TPR Accuracy FPR TPR

CNN+SMOTE 0.98 0.02 0.36 0.95 0.05 0.45

CNN+ADASYN 0.99 0.005 0.27 0.92 0.08 0.45

CNN+SMOTEENN 0.99 0.0008 0.27 0.97 0.03 0.41

CNN+SMOTETOMEK 0.98 0.02 0.32 0.99 0.01 0.32

4.7 Performance Analysis of the Proposed CNN model

A comprehensive comparative analysis was carried out to evaluate the performance of

machine learning (ML) classifiers and the proposed 1D CNN model using over-sampled

and combined-sampled data. The results, as shown in the table 4.12, demonstrate that

our 1D CNN model consistently outperforms all tree-based classifiers, achieving an

impressive 100% accuracy across all sampled data. In contrast, the tree-based classifiers
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exhibit accuracies ranging from 0.92 to 0.96. However, the accompanying table 4.13

reveals that the ML classifiers consistently achieve higher True Positive Rates when

compared to the 1D CNN model. Notably, among the ML models, Adaptive Boosting

stands out with the highest TPR value of 0.59 when using SMOTEENN sampled data.

However, In table 4.14, the 1D CNN achieves the best False Positive Rate of 0.0008

with SMOTEENN sampled data, while the ML methods achieve FPR scores ranging

from 0.04 to 0.07. Although the CNNmodel exhibits slightly lower TPR, its robust FPR

score leads to the correct identification of most of the non-fraudulent transactions. In

addition, Figure 4.6 depicts that our proposed 1D CNN model exhibits improved ROC-

AUC scores using the ADASYN over-sampling technique, outperforming the scores

achieved by the tree-based ML classifiers. This suggests that our proposed CNN model

also performs better in terms of ROC-AUC scores.

Table 4.12: Comparison of accuracy between ML and DL models

Classifiers SMOTE ADASYN SMOTEENN SMOTETOMEK

DT 0.94 0.94 0.94 0.94

GBoost 0.93 0.94 0.93 0.93

XgBoost 0.96 0.96 0.96 0.96

RF 0.96 0.96 0.96 0.96

AdaBoost 0.92 0.92 0.92 0.92

Ensemble 0.96 0.97 0.96 0.97

CNN 0.98 0.99 0.99 0.98

In a comparative analysis with two prior studies of [62] and [72] that focused on

blockchain anomaly detection using the Bitcoin dataset as ours, Table 4.15 illustrates a

detailed juxtaposition. Notably, our proposed ensemble method and 1D CNN method

showcase superior performance across all metrics. While the studies share the primary

objective of identifying malicious transactions, our emphasis extends to the accurate

detection of non-malicious transactions as well. In this regard, our study endeavors

to mitigate false positive rates, resulting in an enhanced true positive rate. Shafiq et

al. delved into various unsupervised Machine Learning approaches to identify anoma-

lous transactions, ultimately finding that the ensemble method outperformed other
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Table 4.13: Comparison of TPR/Sensitivity between ML and DL models

Classifiers SMOTE ADASYN SMOTEENN SMOTETOMEK

DT 0.41 0.41 0.36 0.41

GBoost 0.45 0.55 0.59 0.50

XgBoost 0.36 0.36 0.36 0.36

RF 0.23 0.32 0.36 0.23

AdaBoost 0.59 0.59 0.55 0.59

Ensemble 0.36 0.41 0.36 0.36

CNN 0.36 0.27 0.27 0.32

Table 4.14: Comparison of FPR between ML and DL models

Classifiers SMOTE ADASYN SMOTEENN SMOTETOMEK

DT 0.06 0.06 0.06 0.05

GBoost 0.07 0.06 0.07 0.07

XgBoost 0.05 0.04 0.04 0.04

RF 0.04 0.04 0.04 0.04

AdaBoost 0.08 0.08 0.08 0.08

Ensemble 0.03 0.03 0.04 0.03

CNN 0.02 0.005 0.0008 0.02

explored classifiers. Conversely, Sayadi et al. investigated the use of K-means cluster-

ing and OCSVM for classifying anomalous Bitcoin transactions. However, both studies

encountered challenges, as they exhibited low accuracy and a high False Positive Rate.

The proposed ensemble method exhibits substantial enhancements in both true posi-

tive and false positive values, leveraging preprocessed sampled data obtained through

various preprocessing steps, including feature selections. Our ensemble method excels

in accuracy and notably the FPR value. Notably, our proposed 1D CNN excels in accu-

racy and FPR values. A significant distinction among the studies is that our research

incorporates explainability, along with the inclusion of decision rules, a component

absent in their investigation.
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Figure 4.6: Comparison of ROC-AUC values with ML and DL models

Table 4.15: Comparison between Proposed and Existing Work for Bitcoin anomaly de-

tection

References Model Accuracy FPR Explainability Anomaly Rules

Shafiq et al.[62] Ensemble Classifiers 0.94 0.05 No No

Sayadi et al.[72] OCSVM 0.90 0.09 No No

Our Study Ensemble Classifiers 0.97 0.03 Yes Yes

Our Study 1D CNN 0.98 0.0008 Yes -

4.8 Contribution of the features to anomaly detection with

SHAP

SHAP is a potent technique employed to elucidate the predictions of machine learning

models. It offers a means to assign the contribution of each feature to a particular

prediction, enhancing our comprehension of why a model reached a specific decision.
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Figure 4.7: Hierarchy of the features contributing to classification

This study leverages the SHAP KernelExplainer method to calculate SHAP values,

elucidating the behavior of both ML and DL models for individual instances. Utilizing

the model-agnostic SHAP approach, we applied it to both Machine Learning (ML) and

Deep Learning (DL) models. SHAP values serve the purpose of explaining how a spe-

cific feature’s value influences the model’s prediction compared to what the prediction

would be when that feature adopts a baseline value. At first, it establishes a baseline

prediction, typically by using the average prediction of the model for a set of instances.

This serves as a reference point. For each feature permutation, SHAP predicts the

model’s output and calculates the difference between the baseline prediction and the

current prediction. Then, the method averages these differences across all permutations

to determine the SHAP value for the feature being evaluated.

Figure 4.7 provides a hierarchical summary of features, ordered by their contribu-

tions to the model’s output. The magnitude of the SHAP values indicates the strength

of the feature’s influence. Features with larger absolute SHAP values have a more sub-

stantial impact on the anomaly prediction. Notably, the feature ”total btc” exerts the

most substantial average impact on the model’s classification, whereas ”indegree” con-

tributes the least. Furthermore, the second-highest mean SHAP value is attributed to

”mean out btc,” playing a significant role in anomaly detection. Conversely, ”out btc”
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contributes the second least to the classification. ”in btc” and ”mean in btc” exhibit

nearly equivalent contributions to the classification of Bitcoin transactions.

Figure 4.8 provides a visual comparison of SHAP values, showcasing the contri-

butions of features for four randomly selected anomalous and normal transactions, as

predicted by both the CNN and ML models. In Figure 4.8, the baseline value for ex-

pected anomalous transactions is 0.27 for the CNN model and 0.50 for the ML models.

Remarkably, the predicted scores for anomalous Bitcoin transactions are 0.89 with the

CNN model and 0.86 with the ML models, which are notably higher than the baseline

values. The SHAP value representations in Figures 4.8a and 4.8b illuminate the features

contributing the most to increasing the score. These figures highlight that ”total btc”

holds the highest importance for the CNN model and the second highest for ML mod-

els, followed by ”in btc” or ”mean out btc,” ”out btc”. On the other hand, with the

same baseline value, the predicted scores for non-anomalous Bitcoin transactions are

0.03 with the CNN model and 0.40 with the ML models, which are lower than the

baseline values. The SHAP value representations in Figures 4.8c and 4.8d elucidate the

features contributing the most to decreasing the score. These figures emphasize that

”total btc” holds the highest importance for the CNN model and the second highest

for ML models, followed by ”out btc,” or ”indegree”.

Although ”mean in btc” and ”in btc” hold the highest positions for ML models in

anomalous and non-anomalous cases, respectively, ”total btc” contributes the most in

both cases. Comparing all four cases in Figure 4.8, it’s evident that the ”total btc”

values for anomalous instances are higher than those for normal instances, making them

distinguishable to human observation. Hence, it can be concluded that SHAP values

are effective in explaining both normal and anomalous Bitcoin transactions.

Comparing all four cases in Figure 4.8, it’s evident that the feature values for anoma-

lous instances are higher than those for normal instances, making them discernible to

human observation. To facilitate a better human understanding, a comparison between

actual anomalous and normal data instances is presented in Table 4.16. This table in-

dicates that the features identified by SHAP values in Figure 10 exhibit significant

disparities in actual transaction data. Hence, it can be concluded that SHAP values

are effective in explaining both normal and anomalous Bitcoin transactions.
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Table 4.16: Comparison of actual values of an anomalous and normal Bitcoin transaction

Feature Name Anomalous Normal

Indegree 7 2

in btc 2902 15.96

out btc 2902 15.96

total btc 5804 31.92

mean in btc 414.6 7.98

mean out btc 1451 5.32

4.9 Anomaly Rule Generation and Interpretability Anal-

ysis

Table 4.17: Feature Importance values

Feature Name Importances

total btc 0.666268

mean in btc 0.124338

mean out btc 0.092236

in btc 0.046185

out btc 0.036751

Indegree 0.034222

Interpreting anomaly rules using tree representations can help in understanding

why certain instances are classified as anomalies. It provides a step-by-step breakdown

of the decision process and highlights which features and thresholds played a crucial

role in making the decision. In this study, having explored tree-based machine learning

classifiers for detecting anomalous Bitcoin transactions, tree visualization offers a struc-

tured and interpretable approach to comprehending how the model arrives at decisions

using input features. A visualization of the decision tree with max-depth 10 is shown

in Figure 4.9. The top node of the tree is called the root node, and it represents the

entire dataset. Each subsequent node represents a decision point based on a specific

feature and threshold. Moving down the sub-trees, each node represents a feature and a
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(a)

(b)

(c)

(d)

Figure 4.8: Features contributing to (a) detect an anomalous transaction with CNN

model, (b) detect an anomalous transaction with ML model, (c) detect a non-anomalous

transaction with CNN, (d) detect a non-anomalous transaction with ML model.
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corresponding threshold. Instances are directed to different branches based on whether

their feature values satisfy the given threshold. Each leaf node corresponds to a specific

prediction class, in this case, anomalous or non-anomalous.
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4.10 Summary

In Table 4.17, the descending order of feature importance is presented, with nu-

merical values representing the total normalized reduction in Gini Impurity achieved

by splitting the respective feature throughout the tree. Unsurprisingly, ’total btc,’ the

feature utilized to split at the root node, holds the highest importance. This implies

that ’total btc,’ followed by ’mean in btc’,’ are the most crucial features in determining

the anomaly status of a Bitcoin transaction.

By traversing the decision tree from the root node to a specific leaf node, we can

extract the sequence of decisions (feature and threshold combinations) that lead to

an anomaly prediction. These decisions essentially form the ”anomaly rules” for that

instance. In Table 4.18, we have a set of rules along with the confidence scores that

lead to an anomalous node regarding the tree in Figure 4.9. Decision trees also pro-

vide a measure of feature importance. Features closer to the root of the tree have a

more significant influence on the overall decision-making process. So total btc is the

most important feature that contributes the highest to deciding whether a transaction

is anomalous or not. Moreover, both mean in btc and mean out btc have valuable ef-

fects on classifying anomalous transactions. However, in some cases, the indegree may

also contribute to detecting anomalous transactions. The confidence score reflects the

model’s confidence or certainty in its prediction that the transaction is anomalous based

on the specified conditions in the rules. Rules 1 to 3 give the highest confidence scores

i.e. the highest probability for being anomalous. However, rules 4 to 5 have an average

probability for the Bitcoin transactions to be anomalous. From Table 4.18, the more

thorough the examination of decision rules, the greater the confidence in accurately

identifying anomalous transactions. Although we’ve specifically crafted anomaly rules

for our Bitcoin transaction data, this methodology holds promise for creating effective

decision rules in diverse domains, particularly within the realm of Blockchain.

4.10 Summary

This chapter provides the details of the experimental outcomes and engages in a com-

prehensive discussion of the results. The subsequent chapter shows the summary of the

study and concludes with some feature directions.
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Chapter 5

Discussions, Conclusions, and

Future Work

5.1 Discussions

Our main goal is to enhance the accuracy of fraudulent as well as non-fraudulent

transactions detection. Detecting fraudulent transactions within highly imbalanced

Blockchain transaction data is a complex task. The severe data imbalance can make

them lean towards non-fraudulent transactions, resulting in low true positive rates, as

shown in Table 4.9. Since the convolution neural network can learn features easily

from large instances, we’ve explored the use of Deep Learning, particularly the 1D

CNN model, for identifying fraudulent Bitcoin transactions. Nevertheless, both ma-

chine learning (ML) and deep learning (DL) techniques exhibit distinct impacts on the

detection of fraudulent activity depending on the circumstances.

Tree-based machine learning models prove to be effective in identifying fraudu-

lent transactions, particularly in scenarios with a relatively low number of data in-

stances—both non-fraudulent and fraudulent transactions. Given the capability of

ML models to discern transactions in datasets with limited instances, we introduced

a novel undersampling method named XGBCLUS, comparing its performance against

state-of-the-art methods. Furthermore, we extracted anomaly rules from these tree-

based models, aiming for enhanced human understanding. Thus, we posit that ML

models demonstrate efficacy in detecting anomalies or fraud in blockchain transactions

when data instances are limited, balanced through under-sampling techniques, and the
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interpretation of anomaly rules is deemed essential for human comprehension.

Conversely, deep learning models, particularly those based on convolutional neural

networks (CNNs), prove to be effective in detecting fraud or anomalies in blockchain

transactions, especially when dealing with a substantial volume of data instances. CNN-

based models excel at learning features from large datasets, providing a robust frame-

work for fraud detection. Additionally, in the context of data balancing, over-sampling

techniques demonstrate effectiveness, as deep learning models can adeptly glean in-

sights from extensive data. This study specifically explores the application of the 1D

CNN deep learning method for fraud detection in blockchain transactions, employing

various over-sampling methods for effective data balancing. While utilizing the same

dataset for both studies, our future work aims to expand the scope by collecting ad-

ditional blockchain transaction data to develop an even more robust real-time fraud

detection system, as shown in Figure 1.1, for blockchain transactions.

Since Machine learning and deep learning models are often considered as ”Black

Boxes”, to make these models more understandable, we turn to Explainable AI using

SHAP, as discussed in section 4.8. By analyzing SHAP values across all dataset in-

stances, we identify the most crucial feature, which, in this case, is ”total btc” for both

ML and DL models. This feature’s significance is clear to human observers. SHAP’s

analysis emphasizes the importance of ”total btc” in identifying fraudulent Bitcoin

transactions. SHAP offers a clear and interpretable way to comprehend how each fea-

ture influences the fraudulent transaction detection process. This aids data analysts

and domain experts in recognizing patterns, connections, and potential features in the

data that the model uses for its predictions. In addition, Interpreting anomaly rules

using tree representations can help in understanding why certain instances are classi-

fied as anomalies. It provides a step-by-step breakdown of the decision process and

highlights which features and thresholds played a crucial role in making the decision.

This transparency is especially valuable in domains where explainability is important,

allowing stakeholders to validate the model’s decisions and

The findings of our study bear significant implications for enhancing both blockchain

security and anomaly detection. The efficacy of the proposed ensemble model in de-

tecting anomalous transactions in Bitcoin signifies a promising approach to enhance the

security of blockchain systems. Additionally, the incorporation of eXplainable Artifi-

cial Intelligence (XAI) techniques, including SHAP analysis, along with anomaly rules
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for interpretability analysis, contributes transparency and clarity to the anomaly detec-

tion process of blockchain technologies. Implementing such explainability measures can

contribute to robust anomaly detection systems and, consequently, fortify the overall

security of blockchain technologies. Additionally, the exploration of various sampling

techniques, including the proposed under-sampling and combined-sampling methods,

contributes to the development of strategies for handling highly imbalanced datasets in

the blockchain domain. This has broader implications for anomaly detection in other

contexts where imbalanced data is a common challenge.

5.2 Conclusions

In this study, we have conducted an extensive comparative analysis aimed at detecting

anomalies within Blockchain transaction data with both ML and DL techniques. While

numerous studies have been conducted in this field, a prevailing limitation has been

the absence of explanations for model predictions. To address this shortcoming, our

study endeavors to combine eXplainable Artificial Intelligence (XAI) techniques and

anomaly rules with tree-based ensemble classifiers using Bitcoin transactions. Notably,

the Shapley Additive exPlanation (SHAP) method plays a pivotal role in quantifying

the contribution of each feature toward predicting the model’s output. Moreover, the

anomaly rules help to interpret whether a Bitcoin transaction is anomalous or not.

Consequently, one can readily identify which features play a pivotal role in anomaly

detection.

To further enhance our methodology, we have developed an under-sampling algo-

rithm termed XGBCLUS. This algorithm facilitates the balance between anomalous

and non-anomalous transaction data, and its performance has been compared against

other well-known under-sampling and oversampling techniques. Our findings unequiv-

ocally demonstrate that our proposed under-sampling method, XGBCLUS, has yielded

improvements in TPR and ROC-AUC scores.

Subsequently, the results derived from various single tree-based classifiers are jux-

taposed against those obtained from stacking and voting ensemble classifiers. Our

proposed ensemble classifiers have exhibited superior performance in comparison to

popular single ML classifiers. Furthermore, we have presented a 1D CNN model de-

signed to identify anomalous Bitcoin transactions and assess its performance in compar-
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ison to state-of-the-art Machine Learning algorithms. Our rigorous evaluation, pitting

various tree-based classifiers against our 1D CNN model, resoundingly endorses the

latter. It shines with the highest accuracy and best FPR values. In sum, this study

underscores that combining Machine Learning or Deep learning methods with adept

balancing techniques yields remarkable results in the realm of Blockchain Anomaly

detection.

5.3 Future Work

In future research endeavors, there is potential to delve into the efficacy of our proposed

under-sampling techniques, alongside over-sampling methods and the proposed CNN

techniques, for anomaly detection in different Blockchain domains such as Ethereum

transactions [73], credit card fraud detection [74], and money laundering [75]. The

exploration of a data-driven approach [76] could lead to the development of real-time

blockchain anomaly detection systems. In future research, we plan to gather additional

data related to blockchain and perform further experimental analyses. Additionally,

combining machine learning and deep learning algorithms, such as CNN+SVM, could

be explored to identify the best model for digital transaction anomaly detection. This

could significantly improve the accuracy and effectiveness of fraud detection methods.
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