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Abstract

Post Translational Modification (PTM) plays an essential role in the biological and

molecular mechanisms. They are also considered as a vital element in cell signaling

and networking pathways. Among different PTMs, Methylation is regarded as one

of the essential types. Methylation plays a crucial role in maintaining the dynamic

balance, stability, and remodeling of chromatins. Methylation also leads to differ-

ent abnormalities in cells and is responsible for many serious diseases. Methylation

can be detected by experimental approaches such as methylation-specific antibodies,

mass spectrometry, or characterizing methylation sites using the radioactive label-

ing method. However, these practical approaches are time-consuming and costly.

Therefore, there is a demand for fast and accurate computational techniques to fo-

cus on these issues. This study proposes a machine learning based approach called

LyMethySE to predict methylation sites in proteins. To build this model, we use

an evolutionary-based bi-gram profile combined with predicted structural approach

to extract features. To our best knowledge, no method has been used to predict

the methylation site of lysine residues using combination information as feature ex-

traction technique. Incorporating profile bigram also leads LyMethySE to keep the

features size limited for different evolutionary information window size. We apply

mostly used eight different classifiers from literature as predictor to evaluate our

feature extraction technique. Among them, Support Vector Machine (SVM) out-

performs the result. Therefore, we use SVM as our base classification technique to

build LyMethySE. This study also shows the impact and comparative analysis of

different base classifiers for our extracted features.
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Chapter 1

Introduction

This chapter includes a brief introduction on Methylation site identification necessity, problems

and recent trends to apply. It gives basic problem knowledge including aims and objectives of

this study. It also includes the artifact of our work. Lastly, the organization of this thesis work

is also provided.

1.1 Motivation

Post Translational Modification (PTM) is an important process that increases the functional

diversity of proteins [1]. PTM also plays an essential role in cell signaling and networking

pathways analysis [2]. Understanding the PTM process also helps to uncover the molecular

mechanism of the cells [3]. Among different PTMs, protein methylation is one of the most

important ones. Methylation of proteins appears in different protein residues such as lysine,

arginine, alanine, histidine, asparagine, and proline. The most common type of methylation is

called N-methylation, as it occurs on nitrogen atoms. Other kinds of methylation are mainly

seen in oxygen atoms of glutamate and aspartate residues or sulfur atoms in cysteine residues.

Such methylations are known as O-methylation and S-methylation, respectively. Though the

methylation of protein was brought to light more than forty years ago, the research in this

field is still a recent trend. Methylation of histone proteins plays a vital role in maintaining

the dynamic balance, stability, and remodeling of chromatins, affecting gene expression levels.

Several studies in this field have revealed that the methylation of histone proteins can lead

to abnormalities that causes many serious diseases such as cancer [4][5]. Non-histone proteins

also undergo lysine methylation with a broad impact on different biological processes such as

protein function regulation and RNA sequence processing [4][6]. It has also been shown as the
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1.2 Research Aims

source of various cellular disorders [7].

Analyzing different research done in this field has revealed that the methylation of histone

protein points out the abnormality in protein and leads to many serious diseases such as cancer

[4]. Therefore, among all of the other protein residues most of the work was done focused on

lysine, arginine [3]. The residue lysine can be methylated in mono, di or tri way by histone.

The studies in this regard points out that as H1 and H2 histone proteins play a vital role

for processing different biological analysis most of the work in this field was done focusing on

these two histone protein methylations. In different biological aspects such as gene expression

and protein function regulation and in processing of RNA sequence, lysine methylation plays

an important part [8]. The broad analysis of protein methylations and their impacts is still

evolving. As a result, identifying methylated protein and the methylation sites is an essential

step towards this goal.

1.2 Research Aims

Experimental methods such as analyzing antibodies for specific methylation and mass-spectrometry

are used to identify methylation sites. However, these experimental methods are very time

consuming and costly to implement and execute. Therefore, proposing fast and accurate com-

putational methods to address these problems has attracted tremendous attention [9].

Among the other residues, the lysine methylation is playing a critical role in order to find out

the cellular processes of various disorders and a proper systematic and working process to iden-

tify this methylation site is still in need to explore more [7].

In this paper, we have focused on different computational methods in order to predict the

site of lysine methylation of protein data. We have analyzed different classification algorithms

and found out which give the best result in terms of accuracy, sensitivity, specificity and pre-

cision. We have also done a comparative analysis of different feature types along with some

combinational feature to boost up the existing work that has been done in this field.

1.3 Objectives of the Thesis

The objective of the paper is to establish a better computational method in order to predict

mythylation site from protein data. We want to explore the existing system, the features

that have been used so far and the results that we are having. We also want to introduce

2



1.4 Thesis Contributions

combinational features in order to achieve better results. We perform competitive analysis of

features to identify their impact on mythylation site prediction process.

1.4 Thesis Contributions

The main contribution of this thesis work are,

• We have used the dataset which has shown great impact in post translational modification

identification however never used in methylation site prediction. We prepared that dataset

for methylation site prediction.

• We have extracted evolutionary information as PSSM and converted it with profile bi-

gram to keep the feature size fixed even for different window size. evolutionary based

information as PSSM used as features shown a great result in literature for other PTMs.

Therefore, incorporating it with methylation was one of our study target.

• We have used predicted structural information using SPIDER instead of the actual struc-

tural information which is sometimes hard to extract.

• We have combined the extracted predicted structural information with evolutionary infor-

mation which is extracted from PSSM. No other work was done combining this features.

• We have shown competitive analysis of results for combined and single features.

• We have investigated the impact of using different features along with the combinational

one in case of methylation site prediction.

• We have also analyzed how different kind of machine learning algorithm perform with our

extracted features.

1.5 Organization of the Thesis

The thesis is organised as follows:

Chapter 2 provides the related existing works.

Chapter 3 presents the proposed method.

Chapter 4 discusses the results and experimental analysis.

Chapter 5 presents the conclusions and discusses the future works.

3



Chapter 2

Background

In this chapter we have briefly showed the preliminaries and analyzed existing methods and

their results. We have also performed gap analysis in order to identify our artifact.

2.1 Preliminaries

Here we explain two different preliminaries of our work. They are the biological preliminaries

and machine learning preliminaries.

2.1.1 Biological Preliminaries

2.1.1.1 Proteins

Proteins are the complex large molecules called as building blocks of cells. They are responsible

to do most of the work of cells including functionality and biomass. Protein refers to a long

chain containing thousand of amino acids. This amino acids are responsible for different func-

tionalities including different molecular motors and different signaling processes [10]. Thus it

is an important part to focus on. These protein chains are basically contain 20 different amino

acids. These amino acids are named as a single letter for different references. The 20 different

amoni acids and their refered names are given on table 2.1.

Among these 20 different amino acids, nine are considered as most important residues as

they have more impact in cell ordering. Lysine is one of these important residues which can be

referred as K.

4



2.1 Preliminaries

Amino acid name Referred name

Alanine A

Arginine R

Asparagine N

Aspartic acid D

Cysteine C

Glutamic acid E

Glutamine Q

Glycine G

Histidine H

Isoleucine I

Leucine L

Lysine K

Methionine F

Phenylalanine M

Proline P

Serine S

Threonine T

Tryptophan W

Tyrosine Y

Valine V

Table 2.1: Different amino acids with their reference name

2.1.1.2 Post Translational Modification (PTM)

Post Translational Modification (PTM) refers to the change that takes place in protein residues.

This changes occurs after the translation of RNA messenger to amino acids. The change arises

from ribosomal biosynthetic assembly lines and both the prokaryotic and eukaryotic cells are

responsible for this [11]. This also plays an important role to identify the biological molecular

mechanism [3]. This modification of protein can add additional variation to proteoms. PTMs

can also play a vital role in changing the way of protein folding, stability, localization to cell

compartments, activation/ inactivation etc. It helps to understand the molecular mechanism

of cells. There are more than 400 type of PTMs has been identified so far that can affect the

cells in different ways [12].

5



2.1 Preliminaries

2.1.1.3 Methylation

Among different PTMs, protein methylation is an important one. The methylation of protein

data appears in different protein residues such as lysine, arginine, alanine, histidine, asparagine,

proline etc. Mainly the change is happening on these residues backbone or in the side chain.

This is called N-methylation as this methylation occurs on nitrogen atoms. There are some other

kinds of methylation present which is seen in glutamate and aspartate of oxygen atoms, also in

cysteine of sulfur atoms. They are known as O-methylation and S-methylation respectively. A

vital role is played by the methylation of histone proteins to identify the stability and remodeling

of chromatin of proteins and also in gene expression analyzation. Though both histone and

non-histone protein has the impact of lysine methylation [6], to maintain the dynamic balance

of histone proteins, methylation of lysine residue is mostly responsible. Analyzing different

researches done in this field has revealed that the methylation of histone protein points out the

abnormality in protein and leads to many serious diseases including cancer [4].

The protein residue, lysine, can be methylated in mono, di or tri way by histone. The

studies in this regard points out that as H1 and H2 histone proteins play a vital role for

processing different biological analysis most of the work in this field was done focusing on these

two histone protein methylations. Along with the lysine methylation, arginine methylation

also plays an important role for protein data analysis. It also has the tendency to affect the

histone codes and modify the histones. The arginine methylation to impact the histone codes

generally happens together with the lysine methylation. Many studies have shown that lysine-

specific demethylase 1 and JmjC domain-containing histone demethylase 1 has occurred due

to demethylation of histone H3 which is responsible for lysine 4 and lysine 36 respectively [9].

In different biological aspects such as gene expression and protein function regulation and in

processing of RNA sequence, lysine methylation plays an important part [8].

2.1.2 Machine Learning Preliminaries

2.1.2.1 Defining Machine Learning

Machine learning refers to a branch of Computer Science and to be a little specific, it is known

as a branch of Artificial Intelligence(AI). This is a technique that is implemented to imitate

the human nature of learning and making decisions. This method uses some previous data

to learn about the nature of work and based on those previous data, it uses some algorithm

to make a decision about some unknown instances [13]. Machine learning is been used in

6



2.1 Preliminaries

different diverse fields in order to have prediction about any instances. The applied fields

include pattern recognition, computational biology, computer vision, entertainment, medical,

spacecraft engineering, finance etc. Thus machine learning is known as a ”general purpose

technology” [14]. The implementation of machine learning is increasing with time due to its

huge success in different fields. The nature of Machine learning tasks which learns gradually

make itself eligible to make decision about unseen things made it popular enough to take

decisions or predict any future instance [15].

2.1.2.2 Machine Learning in PTM

As among the other residues, the lysine methylation is playing a vital role in order to find out the

cellular processes of various disorders, therefore, it is a need to find out a process to identify the

methylated sites in order to take proper measures to handle different disorders. There are some

traditional approaches available to identify methylation site. They are candidate approaches

such as methylation-specific antibodies check test, mapping of post-translational modifications

by mass, spectrometry, radioactive labeling to characterize methylation on target proteins [16].

However these methods require different machinaries and its time consuming too. A proper

systematic and effective process to identify this methylation site is still in need to explore [17].

In this regard, in our work, we focus on predicting the site of lysine methylation of protein

data using different machine learning classifiers. This method will be able to take protein data as

input and will produce the possibilities of lysine residues getting methylated or not. Therefore,

we are using some classic binary classification methods in order to find out methylation sites.

This work also tried to find out a novel and effective feature extraction method that will help the

classifiers to predict with the maximum output in case of different evaluation criteria. Therefore,

we use a novel feature extraction method which combines the evolutionary information and

predicted structural information. The structural information is extracted using SPIDER and

the evolutionary information is extracted from PSSM and combined with profile bigram. We

analyze nine different classification algorithms and found out which give the best result in terms

of accuracy, sensitivity, specificity and precision.

2.1.2.3 Machine Learning Algorithms

The algorithms that are mostly used in literature and also used in this study are, Support

Vector Machine, Decision Tree, Logistic Regression, Gradient Boosting, Gaussian Naive Bayes,

7



2.1 Preliminaries

AdaBoost, Bernoulli Naive Bayes, Multi-layer Perceptron classifier and Rotation Forest. A

short description of each classifier is given below,

Support Vector Machine: This is one of the most widely used algorithm in case of

PTM prediction. A large use of Support Vector mchine(SVM) as predictor is also noticed in

methylation site prediction [5, 7, 18–20]. SVM works by creating a hyperplane between classes

and by finding out the data points on which the partition should be made which is known

as support vectors [21]. Support vector is getting more popularity as time passes due to its

simplicity and the flexibility that it has to adapt different kind of classification problem [22].

This method is capable of handling both classification and regression problems.

Logistic Regression: Logistic Regression is another well known machine learning algo-

rithm used for prediction purpose. This is also capable to work with both classification and

regression problem, however, it is mostly popular for classification problems [23]. This model

basically works to establish a relationship between a dependent and an independent variable.

This model mainly used to find out the effect that is having a categorical outcome for predictor

variable [24]. This model is mostly seen to identify and disease or risk factors [24].

Gaussian Naive Bayes: Naive bayes algorithms are mostly popular for its simple proba-

bilistic analysis. When we use the Gaussian distribution to calculate the probability for each

case, it is known as Gaussian Naive bayes [25]. This algorithm always calculates the probability

in an independent manner which indicates that it doesn’t check for any dependency of features.

However, as this model is based on probabilistic model which calculates the probability values

to take decision, it is more faster in case of result generation timing [26].

Bernoulli Naive Bayes: This is also a bayesian network model based on the basic theory

of making decision with probabilistic calculation. However in bernoulli naive bayes, it doesn’t

consider the dependencies between words and uses the feature of binary words. It also works

well with small number of words or data [27]. It works by just keeping track of the presence

of any feature rather than focusing on the number of count or weight [28]. Which shows some

magnificent change in results for different application field.

Decision Tree: Decision tree is known as a tree based machine learning algorithm. Here

in root and each internal node, it makes a decision to choose which sub tree should be chosen

next. This decision is made by analyzing the attribute values and calculating the outputs

based on it. From a set of instances, a decision tree is made basically using divide and conquer

strategy and by generating the output decision from each internal node, we move down to the

8



2.1 Preliminaries

leaf which gives us the predicted label [29]. This algorithm is non-parametric and also can deal

with complex and large dataset effectively [30].

AdaBoost: The algorithms that we is explained so far are single classifiers where a single

startegy or rule is followed to generate the result. However, boosting is known as ensemble

classifier where more than one comparatively identified as weak rule or classifiers results are

combined to take decision. They are capable to generate highly accurate reults by combining

the comparatively weak rules. The first boosting algorithm which was practically implemented

and mostly used and studied is Adaboost [31, 32].

Gradient Boosting: Gradient Boosting algorithm is known as one of the most powerful

machine laerning algorithm with a uge variety of application. It is also possible to customize

this algorithm based on our need by changing the loss function accordingly. It is also an enseble

classifier which incorporates more than one decision to generate the final output [33]. However,

it may not produce expected outcome all the time if the number of iterations and loss function

is not handles properly[34].

Rotation Forest: Rotation Forest (RoF) is a tree-based ensemble method that randomly

splits the data into k subsets, and then applies Principal Component Analysis (PCA) to each

segment for feature transformation [39]. In the end, the results of classification using decision

trees on those transformed features are aggregated using an ensemble to produce the final result.

RoF is a supervised learning model in the area of machine learning. The idea behind RoF is to

introduce a mechanism to encourage the individual accuracy and diversity of each base classifier

at the same time [39]. The decision tree is mainly used as the base classifier for RoF. One of the

reasons for choosing the decision tree is that it is sensitive to the rotation of the feature axes

and can produce better prediction performance [39]. It has demonstrated promising results for

similar studies found in the literature [49-54].

Rotation forest classifier is another example of ensemble machine learning algorithm which

combines the decision of different rules. It is basically a tree based ensemble method which

works by randomly splitting the dataset into some sub datasets and applies some analysis

named PCA (pricipal component analysis) for each sub dataset to extract the features [35].

Decision tree is basically used as base classifier for prediction as decision tree is sensitive on

how we are keeping the data and rotation of each axis, it shows different output which may

help us to find the best one [35].

Multi-layer Perceptron classifier: Multi-layer Perceptron (MLP) is known as neural

network based machine learning algorithm which works in different layer where the input layer
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2.2 Literature Review

takes the input and output layer produces the final output and the hidden layers in between

them are responsible to handle the processing. More than one hidden layers are possible here

and all together creates a connected netwrok which indicates that all the node of upper layer has

a connection with every node in the lower layer [36]. MLP is also widely used neural network

based algorithm which works better with classification problems.

2.2 Literature Review

A good number of computational method have been introduced so far in order to predict

methylation site. We have analyzed the most relevant and recent one to explore the current

status.

In 2009, Ming Shien et al. proposed a new method called MASA to tackle this problem [5].

To build this model, they extracted information related to solvent-accessible surface area from

the surroundings amino acids of a methylation site. They also used Support Vector Machine

(SVM) as their classifier to build MASA.

In the same year, Jianlin Shao et al. used Bi-profile Bayes in order to extract sequential

features and used SVM classifier to solve this problem [18]. Although they could not achieve

better performance than MASA, they still showed the potential for using bi-profile analysis for

methylation prediction.

Later on, Ping Shi et al. proposed a method named PMeS which used enhanced sequential

and physicochemical-based feature extraction techniques [19]. They extracted the coding for

sparse property, van der Waals volume with a normalized format, composition of amino acid

with positive weights, and lastly the surface area to build their feature vector. They also used

SVM as their classification technique.

In 2017, Leyi Wei et al. proposed a new method called MePred-RF [37]. This method was

built using Random Forest (RF) as the classification technique and sequential based feature.

They demonstrated that their model is able to outperform previous studies. Despite achieving

promising results, all these studies used small benchmarks to investigate the performance of

their model. They also mainly relied on sequential and physicochemical properties for feature

extraction.

Later on, Qiu et al. proposed a model based on the structural information of single-residue

[3]. However, they solely focused on just the methylation site for feature extraction rather

than including the neighboring residues. The combined features extracted from the secondary
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2.3 Gap Analysis

structure, accessible surface area, electrostatic potential, protrusion index, depth index, and

the interaction network of the methylation site.

In 2020, Biggar et al. proposed a new method called MethylSight which is built by combining

the prediction of in silico method with the mass spectrometry targeted value in order to identify

the lysine methylation sites [7]. They also used SVM as their classification technique. They

incorporated confidence score which is in between 0 to 1 as a measure of probability in order

to help the users to decide the level of recall.

Most recently, Wei Zheng et al., proposed Met-predictor to predict both methylation site

and methylation types (mono, di and tri-methylated) [20] While most of the protein methy-

lation prediction technique is designed based on sequential or physicochemical properties for

feature extraction, they utilized the tertiary structure information as well in order to enhance

the prediction result. They combined sequential model features with predicted structural in-

formation to build their feature vector. They also used SVM as their classifier and obtained

better results compared to their previous studies.

The summary of literature review is given on table 2.2.

2.3 Gap Analysis

After analyzing the existing study for methylation prediction of lysine residue, we have found

out some places to study more. The points are given bellow with respect to different criteria.

2.3.1 Dataset

In our study we have selected to extrcat data from Compendium of Protein Lysine Modifi-

cations (CPLM) dataset which have not been used directly by any of the previous studies for

methylation site prediction. This dataset contains many PTMs that have been detemined accu-

rately using different experimental techniques [38]. To our best knowledge, though this dataset

has not been used directly for methylation site prediction, it showed to have a good impact on

other PTMs prediction in a good number of recent studies [39–42].

2.3.2 Features

Due to the limitation of sequential based features in terms of performance, studies moved for-

ward to analyze the structural information. Since structural information was extracted from

3D structure of protein for better result, it creates a limitation for those protein where the 3D
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Author’s name

with year

Dataset Features Predictor classi-

fier

Result

Ming Shien et

al.2009 [9]

4 combination. To-

tal: 91,182

solvent-accessible area

from the surroundings

amino acids is used.

Support Vector

Machine

Accuracy:

80.8%

Jianlin Shao et

al.2009 [9]

188 positives and

564 negatives for

lysine

Sequential features ex-

tracted using Bi-profile

Bayes.

Support Vector

Machine

Sensitivity:

70.05% Speci-

ficity: 77.08%

Accuracy:

75.51%

Ping Shi et

al.2012 [11]

322 positive sites

and 4126 negative

sites for methylly-

sine

sparse property, van

der Waals volume with

a normalized format,

lastly the surface area

to build feature vector.

Support Vector

Machine

Specificity:

99.23% Accu-

racy: 91.16%

Leyi Wei et al.

2017 [12]

1,744 samples,

of which true

Kmethylated and

non-K-methylated

samples were 226

and 1518 respec-

tively.

Sequential based fea-

ture

Random Forest Specificity:

84.6% Accu-

racy: 80.7%

Wankun Deng et

al. 2017 [13]

1521 positive sites

and 47 972 nega-

tive sites for lysine

solvent-accessible

surface area, physic-

ochemical properties,

secondary structures.

Modified GPS 3.0

algorithm

Specificity:

95.04%

Qiu et al. 2018

[14]

254 true methy-

lated sites and 674

non methylated

sites for lysine.

Structural information. Random Forest Sensitivity:

95.1% Speci-

ficity: 89%

Sarah Ilyas et al.

2019 [15]

670 positive sam-

ples, 984 negative

samples

Position and composi-

tion relative features

and statistical mo-

ments.

Neural Network

based model

Accuracy:

96.7% (self

consistency),

91.6% (cross-

validation),

93.42% (jack-

knife testing)

Wei Zheng et al.

2020 [16]

5894 experimen-

tally verified lysine

methylation sites

from 2849 protein

sequences

Structural Features Support Vector

Machine

Accuracy:

59.7%

Biggar et al. 2020

[17]

Total 19988 in

training and 4996

in testing.

Silico method with the

mass spectrometry tar-

geted value.

Support Vector

Machine

Competitive

analysis of

recalls

Table 2.2: Literature review summary table
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structure is unknown. Therefore, we have choose to use predicted structural information as

our features which will predict the structural information for proteins in order to find out the

methylation site. We have also combined the predicted structural information with evolutionary

information to have a strong feature set for methylation site prediction. To our best knowl-

edge, no study is found to use combinational feature of predicted structural and evolutionary

information as both of them plays important role in case of methylation site prediction.

2.3.3 Results

The results that we have achieved from literature so far is still not stable in different evaluation

criteria. Therefore, There is a high need to improve the results as the predictors performance

is still remained limited. In this aspect we focused in this study to have a better and stable

result fro different evaluation criteria.
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Chapter 3

Proposed Method

In this chapter we are going to have a clear and brief explanation of the materials that we have

used for the proposed system and also a clear explanation of proposed methods.

3.1 Materials Methods

In our model, LyMethySE, we have used the evolutionary and predicted structural information

that have been extracted from position-specific scoring matrix (PSSM) and SPIDER 2.0 [43, 44]

respectively. To extract our features, the PSSM was extracted and translated to profile bigram

[45, 46]. These incorporated features using PSSM-bigram and predicted structural informa-

tion are then used to predict lysine methylation site. In this study, we have used 8 different

classifiers as base classifier to compare their results and to identify the one with the best per-

formance. These eight classifiers that have been used with different parameters are Support

Vector Machine (SVM) with linear, polynomial and rbf kernel, Logistic Regression(LR), Gaus-

sian Näıve Bayes(GNB), Bernoulli Näıve Bayes, Gradient Boosting(GB), Rotation Forest(RoF),

MLP, AdaBoost, Decision Tree(DT). Among all these 8 classifiers, SVM with rbf kernel gives

us better performance in different evolution criteria. In this section, we present the dataset,

dataset balancing technique, feature extraction process and the classifiers that are used to for

the prediction purpose.

3.1.1 Benchmark Dataset

This study uses Lysine Methylation PTM available at the Compendium of Protein Lysine Mod-

ifications (CPLM). CPLM contains different Lysine PTMs data that have been generated using

14



3.1 Materials Methods

Figure 3.1: The imbalanced data distribution of positive(1) and negative(0) class

experimental methods [38]. The methylation dataset that we use includes 745 protein sequences

with 1,144 lysine methylation sites. We then use CD-HIT [47–49] on this dataset to remove

proteins with more than 40% sequential similarity. After removing the similar sequences, our

dataset contains 633 protein sequences with 1116 methylated sites and 40,857 non-methylated

sites.

3.1.2 Dataset Balancing

Our employed dataset has a ratio of 1:36 for methylated and non-methylated sites, which is

highly imbalanced. Therefore, the model can positively bias the majority class, predicting non-

methylated sites instead of methylated sites. Hence, it is essential to remove imbalances in

data. The data distribution of our imbalanced dataset is given in figure 3.1.

A wide range of data balancing approaches is found in the literature. Broadly these ap-

proaches are divided into two groups, namely, oversampling [50] and under-sampling [51]. Over-

sampling refers to creating more data of minority class, whereas under-sampling points to re-

ducing the number of instances of the majority class. However, in oversampling, the number of
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3.1 Materials Methods

Figure 3.2: The balanced data distribution of positive(1) and negative(0) class using a) KNN

based under sampling method and b) SMOTE over sampling method

samples in the minority class artificially increased, leading to overfitting or biased results. In our

study, we try to investigate both the over sampling and under sampling method as well. Most

widely used two undersampling and over sampling method are K-Nearest Neighbor (KNN) and

Synthetic Minority Over-sampling Technique (SMOTE) respectively are investigated in this

study. The data distribution visualization is given in figure 3.2. In this figure 3.2, a) represents

the data distribution after balancing using KNN based under sampling of majority class and b)

represents the data distribution after balancing using SMOTE over sampling of minority class.

However, the KNN based under sampling method of majority class showed better performance

in order to extract important information for our study. Performance details is given on next

chapter.

Hence, in this study, to build our model LyMethSE, we use the under-sampling method

instead of oversampling. We investigate different under-sampling approaches, among them K-

Nearest Neighbor (KNN), as one of the most widely used under-sampling methods for data

balancing [41, 52, 53], obtained the balancing outcome results. The KNN, used in this study is

built based on the Euclidean distance between all the lysine residues. We remove those negative

residues in the data, with at least one positive data within the k-th nearest neighbors. After

investigating different values for k, we identify k=375, which leads to the balanced dataset with

a 1:1 ratio. After balancing the dataset the final number of positive instances or methylated

samples in the dataset, are 1116, and the number of negative instances or non-methylated

samples are 1101.
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3.1.3 Train and Test Dataset

To investigate our model’s generality and avoid overfitting due to balancing our data, we divide

our dataset into 80:20 instances where 80% of the dataset is used to train the model, and the

other 20% is used as the test data. The testing data is not used for training or parameter

tuning. We also apply 10-fold cross-validation on the training data to assess the generality of

our model.

3.1.4 Features Extraction

In this section, we explain our extracted features and feature selection process. Our extracted

features include evolutionary information incorporated in the form of profile Bi-gram combined

with predicted structural information extracted directly from the protein sequence.

3.1.4.1 Evolutionary Information Based Features

We use evolutionary information extracted from the position-specific scoring matrix (PSSM)

[43]. Evolutionary features, especially those extracted from PSSM, have been shown effective

to solve similar problems [54–56]. PSSM is an N × 20 matrix where N represents the protein

sequence length, that presents the substitution probability of given amino acid with other amino

acids for its position along the protein sequence. To generate PSSM, we run PSI-BLAST against

a non-redundant (NR) protein databank with three iterations and a threshold (E) of 0.001. We

then transform PSSM in terms of profile bigram [45, 46].To the best of our knowledge, PSSM

has never been used for feature extraction for the Methylation site prediction problem.

3.1.4.2 Profile Bigram

Profile bigram is a well-established method to extract significant discriminatory information

from PSSM matrix [16][25]. Evolutionary-based profile bigram is extracted in the following

manner.

Bi = Bip,q

30∑
k=1

rk,prk+1,q (3.1)

Where, Bi denotes the profile bigram of the PSSM matrix R and rij is indicating a single

element of R. The value of p and q here is from 1 to 20 equal to the number of amino acids

building the protein sequence which is representing a 20 x 20 matrix. This 20 x 20 matrix is

then converted into a flat 400-dimension feature vector. This resulted matrix is considered as
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3.1 Materials Methods

our feature vector.

ProBi = [Bi1,1, Bi1,2, . . . , Bi1,20, Bi2,1, Bi2,2. . . , Bi20,1, Bi20,2, . . . , Bi20,19, Bi20,20] (3.2)

In this study, the window size that is used to produce the PSSM is 15. This denotes that 15

amino acid from upside and 15 from downside is considered as window for PSSM generation.

We investigated different window sizes to extract profile bigram from PSSM which among them,

using 15 demonstrated the best results. If the part of protein sequence that we are considering

is named as PE, which is having a lysine residue at the middle of the portion and 15 amino

acids at upside and 15 more at downside, then the visibility of that segment will be,

PE = A−15, A−14, . . . ., , A−1,K,A1. . . ., A14, A15 (3.3)

Where K is the targeted lysine residue for evolutionary features. The amino acids named as

A−15 to A−1 and A1 to A15 are the upside amino acids and downside amino acids respectively

for the targeted lysine in the middle.

In a case of protein head and tail parts, where there are not enough amino acids to build

the complete window, we use mirror method to fill the required number. In this method, we

filling out the missing amino acids from the data that comes when we mirror reflect the other

part. This method is shown in figure 3.3

3.1.4.3 Structural Information Based Features

In this study, we use the secondary structure, the backbone torsion angles and the Accessible

Surface Area (ASA) as structural features. The secondary structure have coil, strand and helix

named three states and the torsion angles have θ, τ , ψ, and φ named four angles. From the

previous studies [41, 52–54, 57, 58], we have seen that the structural information such as sec-

ondary structure, ASA and torsion angles plays an important role in prediction or classification

work. In this study, we use SPIDER 2.0 [43, 44] which can give us a predicted value for those

selected parameters. SPIDER 2.0 is considered as a tool that helps us to find out the predicted

structural information of a protein sequence. This is known as a machine learning based tool

that is built with an architecture of deep learning methods. As an output, SPIDER 2.0 provides

us the predicted values of amino acid incorporated with the protein sequence in a matrix form

(named the matrix as SPD2). This tool is also considered as one of the best tool in order to

predict the three structural features (secondary structure, ASA, torsion angles) [59–61]. For

these study, the structural features that we have used are explained in the following parts,
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Figure 3.3: Extracting features from the neighboring amino acids using mirror method for amino

acids at the two ends of a protein
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• Secondary Structure: The secondary structure is used to identify the basic three

dimensional structure of a protein data. Coil, strand and helix are the three objects of

a secondary structure. When we are predicting the secondary structure of a protein, it

is basically giving us the prediction of building one of these three components for every

amino acid. This information helps us to differentiate the amino acids that are more

stable and the amino acids that are more capable to interrelate with other molecules. As

an output of the secondary structure, the SPD2 produces a matrix of N x 3 size where the

N denotes the length of the protein sequence and the 3 columns are denoting the three

different components of secondary structure [62].

• Accessible Surface Area: The surroundings of the methylation site also plays an

important role as structural information which is named as a solvent-accessible surface

area (ASA) of methylation site. SPD2 is known as the best way to find out the structural

information and the ASA of protein sequence [5]. The ASA provides us information about

the amino acids that relies on the surface area and which has more chances to endure

Post Transitional Modifications. We have generated the final ASA result by analyzing

the SPD2 result for each sequences of proteins.

• Torsion Angles: The torsion angles are used as a local backbone angle of a protein

sequence. It represents the local structure of protein. While the secondary structure

give us basic knowledge about the local configurations, the torsion angle provides us a

successive information of the protein sequence local structure. It basically provides us

the successive information about interactivity of amino acid. The torsion angles generally

refer to four angles that are θ, τ , ψ, and φ [43, 44]. The probabilistic value of these angles

are produced as an output of SPD2.

3.2 Classifiers

To investigate the effectiveness of our model, we employed 8 classifiers where most of them

have been successfully used for PTM site prediction task [5–7, 9, 18, 20, 56]. Note that these

classifiers were studied just using sequential and structural features. Hence, investigating the

effectiveness of these classifiers, we provide a comparison between different classifiers using com-

binational features of evolutionary-based profile bigram and predicted structural information as

input feature. The classifiers that are explored in this study are, Support Vector Machine (SVM)

with linear, polynomial and rbf kernel, Logistic Regression(LR), Gaussian Näıve Bayes(GNB),
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Bernoulli Näıve Bayes, Gradient Boosting(GB), Rotation Forest(RoF), MLP, AdaBoost, Deci-

sion Tree(DT). Among all these 9 classifiers, we achieve the best result using SVM with respect

to different evolution criteria. Therefore, we build our own model LyMethSE using the SVM

classifier.

3.2.1 Support Vector Machine

Support Vector Machine (SVM) is known as one of the most widely used Machine Learning

algorithms. This classical machine learning algorithm is proved to perform better than many

other classifiers for different tasks. It can solve both linear and nonlinear problems and has been

used in a wide range of real-world scenarios. SVM aims to find the largest marginal hyper plane

between classes based on support vector theory to reduce the prediction error and enhance the

generality of the classification task [21]. Different kernel functions are used along with the SVM

algorithm, such as linear, nonlinear, polynomial, radial basis function (RBF), and sigmoid [63].

SVM has also been widely used for different Biological Applications [21, 63]. In case of protein

sequence analysis, SVM shows a very promising performance compared to other classifiers [64–

66]. SVM is also widely used to predict methylation sites in the literature as well [5, 7, 18–20].

To build LyMethSE, we use SVM with rbf as its kernel function, demonstrating the best results

compared to other kernels.

3.2.2 Other applied classifiers

Though we used SVM as a classifier to build LyMethSE, we applied some other classifiers

to our extracted features in order to identify the methylated and non-methylated sites. We

used different single model classifiers, tree based classifiers, ensemble classifiers, tree based

ensemble classifiers and neural network models to find out how these classifiers perform with

our extracted features and also to prove the generosity of our feature engineering method.

The algorithms that are used for performance evaluation are, Support vector machine(SVM),

Logistic regression, Gaussian Naive Bayes, Bernoulli Naive Bayes, Decision Tree, Rotation

Forest, Adaboost, Gradient Boosting and Multi layer Perceptron Classifier.

3.3 Performance Evaluation

In order to have an accurate analysis result, it is really important to design a proper perfor-

mance evaluation matrix. To evaluate our model, we use six different evaluation criteria for
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performance analysis namely, Accuracy (Acc), Sensitivity (Sn), Specificity (Sp), Precision (Pr),

F1-score, and Matthews correlation coefficient (MCC). These evaluation metrics are calculated

as follows,

Acc =
TP + TN

TP + TN + FP + FN
∗ 100 (3.4)

Sn =
TP

TP + FN
∗ 100 (3.5)

Sp =
TN

TN + FP
∗ 100 (3.6)

Pr =
TP

TN + FP
(3.7)

F1 =
2 ∗ SN ∗ PR
PR+ SN

(3.8)

MCC =
(TP ∗ TN) − (FP ∗ FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.9)

Where, TP, TN, FP and FN are True Positive, True Negative, False Positive and False

Negative, respectively. True Positive (TP) refers to those instances that are methylated and

correctly classified as methylated sites, True Negative (TN) refers to the instances that are non-

methylated and correctly classified as non-methylated, False Positive (FP) reflects the number

of those instances that are classified as Methylated sites while they are actually non-methylated

sites, and False Negative (FN) value refers the number of instances that are classified as non-

methylated while they are methylated sites.

3.3.1 Validation

In order to evaluate the performance of our model, we use both independent test set, and 10-fold

cross-validation. In K-fold cross-validation we divide the employed dataset into K segments and

then use K-1 segments to train the model and the last segment is used to test. We then repeat

this model K times to use all the samples exactly once for testing. Note that we use 10-fold

cross-validation on the training data. The testing data is not used for any parameter tuning.

The overall working mechanism and design of our model is shown in a diagram given on figure

3.4.

3.4 Summary

In this chapter we briefly describe the dataset that we have used and the pre-processing steps of

dataset preparation. It also describes the feature preparation phases with detailed description of
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Figure 3.4: The working methodology of LyMethySE

the features that we prepare to use. Moreover it describes the implemented classifiers along with

the classifier that we have chosen to use as base classifier to predict methylation for LyMethSE.

The performane eveluation method and validation method are also described in this chapter.
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Chapter 4

Experimental Analysis

In this chapter we describe the results that we have achieved using combinational features. We

also describe the competitive analysis of using different features extraction methods.

4.1 Independent train and test set

In this study we have used a balanced CPLM dataset which is having 1116 methylated samples

and 1101 non-methylated samples. To validate our model, we divided the dataset and 20% of

it is used to test the model and 80% of the dataset is used to train our model.

4.2 Experimental Results

From literature, we see that non of the study used evolutionary based features. However, it

showed an amazing output in case of other PTM prediction. Again, evolutionary information

extracted from PSSM and transforming it to profile bigram also showed an amazing feature

extraction technique for PTM. Therefore, we extracted the evolutionary based profile bigram

as features first and applied different machine learning algorithms to identify the influence of

this feature in case of methylation site prediction. The results that we have achieved using

evolutionary based profile bigram as extracted features for 10 fold cross validation is given on

table 4.1.

From table 4.1 we can see that most of the classifiers (except Gaussian NB and Bernoulli

NB) is having a good performance in case of different evaluation criteria. We can also say that

Naive Bayes based algorithm, were we follow the principle of conditional probability is not going

with this prediction method where we have used evolutionary based information converted to
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Classifier ACC(%) MCC Precision

(%)

Roc

AUC

score

(%)

F1 score Sensitivity

(%)

Specificity

(%)

Logistic Re-

gression (LR)

97.4 0.94 97.8 97.4 0.96 96.9 97.6

Decision Tree

(DT)

92.1 0.83 92.7 91.1 0.90 91.5 93.1

Gradient

Boosting (GB)

95.1 0.90 95.7 94.3 0.93 93.2 95.8

Gaussian NB 73.5 0.49 84.5 73.3 0.67 56.6 90.0

AdaBoost 98.1 0.96 97.6 98.3 0.97 97.4 98.6

BernoulliNB 87.3 0.75 82.9 87.4 0.87 94.1 81.8

MLP 97.2 0.94 97.8 97.0 0.97 96.6 97.9

SVM 98.7 0.96 98.2 97.9 0.98 98.4 98.8

Table 4.1: Results of different classifiers using evolutionary based profile bigram as features for

10 fold cross validation

profile bigram as feature set. We can also observe that neural network based algorithm MLP

and ensemble learning based algorithm AdaBoost and Gradient Boosting is having very nearer

result to single and basic classifier Logistic regression and SVM. It shows the generosity of

our extracted features and also shows the impact of evolutionary based features in case of

methylation site prediction.

In order to investigate more precisely, we also generated the independent test set results for

evolutionary based profile bigram extracted features for different machine learning algorithms.

Our observation of its performance are given on table 4.2. From the table we can see that here

also all the different classifiers except the naive bayes based classifiers are providing a good

result in case of different performance evaluation criteria. Here the decision tree classifier is

giving a little less result compared to other ensemble and single classifiers, however, we cannot

ignore the results as it is having accuracy, precision ROC AUC score, sensitivity and specificity

above 90%. In case of other present ensembles and single classifiers, they are providing accuracy,

precision ROC AUC score, sensitivity and specificity over 95%. From both table 4.1 and table

4.2 where the 10 fold cross validation and independent test set results are given for evolutionary

based profile bigram features we can say state evolutionary based information is having a great

influence in methylation site prediction. They are having a very promising result in different

performance measure criteria when we are using different kind of machine learning algorithms.

To investigate more and in the hope to improve the results more, we incorporate the pre-
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Classifier ACC(%) MCC Precision

(%)

Roc

AUC

score

(%)

F1 score Sensitivity

(%)

Specificity

(%)

Logistic Re-

gression (LR)

97.1 0.93 96.8 97.2 0.96 97.3 96.9

Decision Tree

(DT)

91.2 0.82 90.7 91.3 0.91 91.5 90.9

Gradient

Boosting (GB)

96.2 0.92 95.5 96.3 0.96 96.8 95.8

Gaussian NB 74.2 0.52 88.4 73.9 0.67 54.9 93.0

AdaBoost 97.1 0.94 96.8 97.1 0.97 97.3 96.9

BernoulliNB 85.9 0.72 82.5 86.1 0.86 90.6 81.3

MLP 97.8 0.94 96.5 97.8 0.97 98.8 96.5

SVM 97.3 0.94 98.3 97.6 0.97 97.9 98.2

Table 4.2: Results of different classifiers using evolutionary based profile bigram as features for

independent test set

dicted structural based features with evolutionary based bigram profile and try to apply the

same algorithms to identify how they perform with combinational feature. From literature we

already identify that structural information has great influence in methylation site prediction.

Therefore, we want to incorporate two different important features together in this predic-

tion technique to achieve better results. In this regard, we build our model LyMethSE using

incorporated combinational feature of evolutionary based bigram profile information and pre-

dicted structural information. As from table 4.1 and table 4.2 we identify that evolutionary

based information is working very well with SVM. We use SVM as base classifier to predict

the methylation site in our model LyMethSE. The results that we achieve using combinational

feature extraction method for our model for 10 fold cross validation are given on table 4.3.

From the table we can see that LyMethSE is having a satisfying result in comparison with

other classifiers. In table 4.3 we can find that in LyMethSE is having 98.5% accuracy, 0.97

MCC, 98.6% precision value, 98.5% Roc AUC score, 0.99 F1 score, 98.5% sensitivity and 98.5%

specificity. In comparison with other classifiers, LyMethSE is outperforming in all the evalu-

ation criteria. However, we can not ignore the results that we are having for other different

classifiers. Except the naive bayes based classifiers, almost all other classifiers are performing

very well with combinational features and also providing a very promising results in different

performance measurement criteria.

To investigate the combinational feature more, we also generate results for independent test
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Classifier ACC(%) MCC Precision

(%)

Roc

AUC

score

(%)

F1 score Sensitivity

(%)

Specificity

(%)

Logistic Re-

gression (LR)

97.3 0.95 97.6 97.3 0.97 97.1 97.6

Decision Tree

(DT)

91.4 0.83 92.1 91.4 0.91 90.9 91.9

Gradient

Boosting (GB)

96.1 0.92 97.2 96.1 0.96 95.0 97.3

Gaussian NB 74.6 0.51 84.3 74.7 0.71 60.9 88.4

AdaBoost 97.7 0.96 97.8 97.7 0.98 97.8 97.7

BernoulliNB 86.6 0.74 82.1 86.6 0.88 94.4 78.9

MLP 97.0 0.94 97.5 97.0 0.98 96.5 97.5

Rotation For-

est

93.0 0.86 93.6 93.0 0.93 92.5 93.5

LyMethSE 98.5 0.97 98.6 98.5 0.99 98.5 98.5

Table 4.3: Results of LyMethSE along with other classifiers using 10 fold cross validation

score for the same classifiers that we have used for 10 fold to compare the results. The results

that we achieve for independent test set are given in table 4.4.

Classifier ACC(%) MCC Precision

(%)

Roc

AUC

score

(%)

F1 score Sensitivity

(%)

Specificity

(%)

Logistic Re-

gression (LR)

98.0 0.96 99.1 98.0 0.98 96.9 99.1

Decision Tree

(DT)

93.5 0.87 95.3 93.5 0.93 91.5 95.5

Gradient

Boosting (GB)

96.2 0.92 96.8 96.2 0.96 95.5 96.8

Gaussian NB 73.5 0.50 84.9 73.6 0.69 57.6 89.5

AdaBoost 98.4 0.97 100 98.4 0.98 96.9 100

BernoulliNB 89.2 0.79 85.4 89.2 0.89 94.6 83.7

MLP 97.5 0.95 99.5 97.5 0.97 95.5 99.5

Rotation For-

est

91.9 0.84 93.1 91.9 0.92 90.6 93.2

LyMethSE 98.9 0.98 100 98.9 0.99 97.8 100

Table 4.4: Results of LyMethSE along with other classifiers using independent test set

As shown in Table 4.4, LyMethSE also outperforms and produced a significant result for

independent test set as well in comparison with other eight classifiers. LyMethSE achieves

27
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98.9%, 100%, 97.8%, 100%, 0.98, and 0.99 in terms of Accuracy, Precision, Sensitivity, Speci-

ficity, MCC, and F1-score, respectively. This result scheme is having best result in case of all

the evaluation criteria. Achieving consistently higher results for both 10-fold cross-validation

and independent test set demonstrates the generality of LyMethSE and its preference over other

classifiers with combinational feature. Other different machine learning algorithms are perform-

ing well here too and the results they produced is having a very near one with LyMethSE. It

proves the success of our feature extraction method and generation of combinational features

with all the important information to predict methylation site.

As Results of combinational features demonstrated in Table 4.3 and Table 4.4 reflects the

performance of different classifiers for combinational feature of evolutionary bi-profile and struc-

tural information. If we analyze the results more, we can get that the classification results are

not varying much and almost all the classifiers are proving prediction accuracy results which is

more than 90% in average (except GNB). As shown in these tables, all classifiers attain high

prediction performance (excluding GNB) which demonstrates the effectiveness of using the fea-

ture of bi-gram profile to extract evolutionary information from PSSM and combining them

with predicted structural information to tackle this problem. Using this combination of feature

extraction process helps to keep the feature size constant even for different window sizes. This

helps our model to obtain discriminatory information and also to keep the computational cost

low for large amount of data. Therefore, not only LyMethSE is providing higher performance

with respect to different evaluation scores, but also process large amount of protein sequences

with a fixed size features which is beneficiary in terms of time consumption.

As from the discussion above we can say that using evolutionary based bi profile feature

we have a very good result for different classifiers. However, combining it with predicted

structural information help us to improve the result a little more. To compare and show the

difference of using evolutionary based bi profile as features and also using combination of it

with predicted structural information as feature, we generate a bar chart of MCC score and f1

score for both of the results that we achieve for this two feature extraction methods. The bar

chart of MCC and f1 score for evolutionary based bigram profile as features and combination of

it with predicted structural information as feature for 10 fold cross validation is shown in figure

4.1. We generate the same thing for independent test score as well which is given on figure 4.2.

As our dataset was imbalanced and we balanced it using under sampling method, we focus to

show the comparison result based on MCC and f1 score. From the bar chart we can say that

for most of the classifiers, it worked a little better for combinational feature in terms of MCC

28
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Figure 4.1: (a) MCC score and (b) f1 score of classifiers results for 10 fold cross validation

using evolutionary based bigram as feature and combination of evolutionary based bigram with

predicted structural information as feature

and f1 score for both cross validation and independent test set. It shows that combining the

predicted structural information with the evolutionary based bigram profile help the model to

improve its results in terms of different evaluation criteria.

To provide more insight to our achieve results, we generate the Receiver Operating Charac-

teristic (ROC) curves for different used classifiers and our model LyMethSE. the ROC curves for

10-fold cross-validation and independent test set for different classifiers along with LyMethSE

are given in Figure 4.3.

In figure 4.3, the x-axis shows the False Positive Rate or FPR and the y-axis shows the

True Positive Rate or TRP. TPR and FPR basically refers to the sensitivity and specificity,

respectively. We want to reach the optimum point for the TRP and FRP graph where the TRP

touches the maximum value and FRP remains in minimum value. The left ROC curve reflects

the results for 10-fold cross-validation whereas the right one is for independent test results.

As shown in this figure, LyMethSE achieves better results compared to other classifiers which

demonstrates the generality and effectiveness of this model. However, we can see from the ROC

curve that some other classifiers such as Adaboost(AB), Logistic Regression(LR) and Gradient

Boosting(GB) is having a promising result in the curve too. Note that the other classifiers that

are shown in the curve are also using the same extracted features which are extracted using our

novel approach. Promising and competitive results that are achieved by other classifiers using
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Figure 4.2: (a) MCC score and (b) f1 score of classifiers results for independent test set using

evolutionary based bigram as feature and combination of evolutionary based bigram with predicted

structural information as feature

Figure 4.3: ROC Curve for TPR vs FPR using (a) 10-fold cross validation and (b) independent

test set
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Figure 4.4: Precision-Recall Curve for LyMethySE model and other classifiers

our extracted features, demonstrates their effectiveness of this feature extraction technique

in methylation site prediction task. From figure 4.3 (a) we can see that the AUC score of

LyMethSE for cross validation is 0.994 and for the independent test set in figure 4.3 (b) is

0.999. Though in case of cross validation, Adaboost(AB) and Gradient Boosting(GB) and in

case of independent test set Adaboost(AB) and Logistic Regression(LR) is having the same

value for area under the ROC curve, by analyzing the curves, we can say that LyMethSE is

holding the best area for both of the cases.

As it is discussed in the literature, achieving even the best AUC for ROC curve does not

guarantee to have the best area under the curve for Precision-Recall (PR) curve [67]. Therefore,

in figure 4.4, the precision-recall curves for LyMethSE compared to our employed classifiers are

shown. In this curve, x-axis shows the level of recall and y-axis shows the level of precision.

As shown in Figure 4.4, LyMethSE demonstrate AUC of 0.999 for PR curve which is in line

with those reported for ROC curve and better than those reported for other classifiers. From

the curve we also can see that Logistic regression(LR) and AdaBoost(AB) is also having the

same area under PR curve. However, from the curve we can analyze and find out that Ly-

MethSE is holding the best result for precision and recall. In other way, the outstanding results

which is near to LyMethSE is actually reflecting the benefit of using combinational features of

evolutionary and predicted structural information in the field of methylation site prediction.
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As we discussed about different investigation methods to prove the generosity of our model

and feature extraction technique, we did all this experiments using a dataset which was being

balanced using KNN based under sampling method. In order to ensure if we are not using any

important data while under sampling, we decide to implement a over sampling method as well

and check the outcome to compare if our balancing method is able to extract the important

information. In order to do this, we applied a most common and widely used minority class

over sampling method Synthetic Minority Over-sampling Technique (SMOTE). In our dataset,

there were 1116 positive instances which indicates the methylated site data and 40857 negative

instances which indicated non-methylated sites. We applied the SMOTE to over sample the

positive class using euclidean distance. After applying this balancing method, we have 40857

positive and negative instances. In this balanced dataset with combinational feature of evolu-

tionary bigram and predicted structural information, we applied the previously best performing

algorithms for independent test set. The results that we get is given on table 4.5. From the

results we can identify that all the best performed machine learning algorithms with knn based

under sampling method are giving much lower results with SMOTE over sampling method.

Therefore, we can come to a point that this over sampling method is adding unnecessary in-

formation and thus our important information are not considered properly. However, it also

proves that using knn based under sampling method of majority class here performed well for

our dataset to extract and keep all the important information.

Classifier ACC(%) MCC Precision

(%)

Roc

AUC

score

(%)

F1 score Sensitivity

(%)

Specificity

(%)

Logistic Re-

gression (LR)

73.2 0.46 72.4 73.1 0.74 75.6 70.6

Decision Tree

(DT)

93.3 0.86 91.5 93.3 0.93 95.7 90.9

Gradient

Boosting (GB)

86.9 0.73 85.1 86.8 0.87 89.7 84.0

AdaBoost 82.4 0.64 80.9 82.4 0.83 85.2 79.5

MLP 97.8 0.95 97.6 97.8 0.97 98.0 97.6

SVM 92.0 0.84 89.2 92.0 0.92 95.8 88.2

Table 4.5: Results of different classifiers using combinational features and SMOTE minority class

over sampling method

The comparison of results achieved using LyMethSE compared to other classifiers indicates

the preference of our proposed model compared to other classifiers used for this task. In
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4.3 Summary

addition, achieving promising results for all the classifiers investigated in this study demonstrate

the effectiveness of our proposed combinational feature of evolutionary bi-profile and predicted

staructural information to predict protein Methylation sites.

4.3 Summary

In this chapter, we provide the brief result analysis of different classifiers along with LyMethSE.

We have also shown the generality of our feature extraction method in this chapter. We analyze

the ROC curve for the results of different classifiers with our extracted features. We generate

the Precision-Recall curve as well for better comparison of curve areas.
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Chapter 5

Conclusions, and Future Work

5.1 Conclusions

In this work, we introduce a novel predictor LyMethSE for methylation site prediction of lysine

residues from a protein sequence. This method shows the effectiveness of using combination of

evolutionary bi-profile information and predicted structural information as features for methy-

lation site prediction. The evolutionary information extracted from protein sequence and then

profile bigram was used to keep the features size fixed for different window size consideration.

This features are then combined with structural information and generated the final features

list. After extracting the features, data balancing was done using K-nearest Neighbor algorithm

to avoid any biasness in result generation process. Different classifiers are used for predicting

the sites for the extracted features and our model achieves a significantly outstanding result

for such extracted features. The accuracy, sensitivity, specificity and MCC results that Ly-

MethSE achieves are 98.9%, 97.8%, 100% and 0.98 for individual test score. In this study, we

also present the influence of different classifiers in our extracted features. Thus, we see that

LyMethSE along with SVM with rbf kernel achieves promising results in this aspect. In spite

of achieving such promising results, the main lacking of such computational method is that we

cannot identify the reason behind getting a lysine methylated or non-methylated.

5.2 Future Work

In future, we want to analyze the reason behind getting a lysine methylated or non-methylated.

We also want to apply our extracted novel combinational features in different benchmarks and

different methylated site prediction to achieve better results.
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