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Abstract 

We studied some Greedy Algorithms, implemented to observe the in depth 

functionalities. We used the main idea of Knapsack problem to solve some problems 

which are inspired by real life applications. Afterwards we thought of implementing MST 

with Genetic Algorithm. Genetic Algorithm is one of the most evolutionary methods in 

the field of computer science for solving optimization problem. With the help of Genetic 

Algorithm we designed an algorithm that makes it possible to solve MST problems more 

efficiently.  
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Chapter1  

Introduction 

Algorithms cannot be designed hoping to be the magical solution to a complicated 

problem. Different techniques are requiered to solve different kind of problems. Greedy 

algorithms are one of the techniques. Greedy algorithms make a locally-optimal choice 

that will lead to a globally-optimal solution. 

 

We have studied selected greedy algorithms which are  Prim’s and Kruskal’s algorithms 

for minimum spanning tree, Dijkstra’s and Bellman-Ford’s algorithms for shortest path. 

We have also studied Knapsack problems and Huffman coding. Following the study we 

tried to implement and solve minimum spanning tree problem. We used a variant of 

Genetic algorithms to solve the problem. 

 

In monitoring other Greedy Algorithms, it was seen that some Greedy algorithms do not 

achieve best optimal solution in several cases as they seem to be short sighted. They have 

only one chance to determine the optimal solution and thus the decision becomes 

irrevocable. The main contribution of this paper is to determine such a Greedy Algorithm 

that can overcome this weakness and can give the best optimal solution. The main goal is 

to use some properties of genetic algorithm. We made different combinations of 

elimination technique to make all possible spanning tree and furthermore picked the 

spanning tree with the least objective function value. By doing so the possibility of 

getting best optimal minimum spanning tree was increased.  
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Chapter 2 

Background  

For particular problem greedy algorithms takes decision based on the information they 

have on that particular time. They emphasize on local analysis rather than global. As they 

focus only on single basis to solve the problem they are called ‘greedy’. 

 

 

2.1 Why we use greedy algorithm: 

Generally if a problem contains an objective function and that needs to be optimized 

which could be either minimization or maximization then greedy algorithms are suitable 

candidate for it. While running, the Greedy algorithm makes greedy choices at each step 

to make sure to optimize the objective function considering that it never goes back and 

reverses decision.  

Greedy Algorithms can solve problems having the following properties: 

1. Greedy Choice Property 

2. Optimal Substructure. 

Also Greedy Algorithms solve combinatorial problems having the properties of matroid.  

Considering the real life applications, Greedy Algorithms are used in various branches 

such as: 

¶ Internal Scheduling 

¶ Minimization ( Minimum spanning tree) 

¶ Knapsack problems 

¶ Data compression ( Huffman) 

¶ Gaming 

¶ Coin change problems 

¶ Optimal Merging 

¶ Topological Sort 
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2.2 When Greedy Algorithms fail: 

We know that greedy algorithms try to obtain local optimizations so that it can find 

reasonable global solutions. But this property leads greedy algorithms to fail in some 

cases. So sometimes they tend to find solutions that are even less than optimal solutions 

or sub optimal solutions. Such case happened in the following scenario.                

 

  Figure 2.1: How Greedy Algorithm fails to obtain optimal solution 

 

In this scenario we wanted to find the largest sum. At each step they consider the 

information that they have. So at the beginning they choose 14 as it appears to be larger 

than other neighbors. Further they approach the path where they find the largest value. 

Which is 8+14+7= 29. But this value is not the largest sum. The best solution would be 

8+5+58 = 71. As Greedy Algorithms only emphasize to the local space instead of global 

space, they gradually fail to gain the best solution. For this property Greedy Algorithms 

are often called ‘short sighted’. 

 

2.3 Types: 

Standard: 

1. Huffman Coding 

2. Job Sequencing Problem 

3. Egyptian Fraction 

4. Efficient Huffman Coding for sorted input 

5. Activity Selection Problem 
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Graph Theory: 

Minimum Spanning Tree: 

1. Prim’s Algorithm ( Minimum Spanning Tree ) 

2. Kruskal’s Algorithm (Minimum Spanning Tree) 

3. Reverse delete algorithm (Minimum Spanning Tree) 

4. Boruvka’s Minimum Spanning Tree 

5. Dial’s Algorithm 

Shortest Path: 

1. Dijkastra’s Algorithm (Shortest Path) 

2. Bellman-Form Algorithm (Shortest Path) 

Adjacency List Representation:  

1. Dijkstra’s Adjacency List Representation 

      2. Prim’s adjacency list representation  

 

Operating Systems:  

Scheduling: 

¶ Shortest Job First  

Memory Management:  

1. Best Fit algorithm  

2. First Fit algorithm  

3. Worst Fit algorithm  
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Chapter 3 

Selected Greedy Algorithm 

3.1 Primôs Algorithm for minimum spanning tree 

 

      3.1.1 History 

In 1930 Prim’s algorithm was developed by mathematician Vojtěch Jarník. But it 

was not renowned and famous that time.  Later in 1957 computer scientist Robert 

C. Prim rediscovered and republished it. 2 years later in 1959, another scientist 

Edsger W. Dijkstra did the same. Prim’s algorithm is called by many names such 

as the Prim–Jarník algorithm, DJP algorithm, Jarník's algorithm or the Prim–

Dijkstra algorithm.  

 

      3.1.2 Algorithm 

 3.1.2.1 Pseudocode of prim’s algorithm 

Minimum(vertex) 

   n=INT_MAX 

   for i=0 to vertex-1 

    if q.i>0 and key.i<n 

     n=key.i 

     k=i 

   return k 

 

  Prime_algo(e,v) 

   for i=0 to vertex-1 

    key.i=INT_MAX 

    predecessor.i=-1 

    q.i=1 

   key.0=0 
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   for j=0 to vertex-1 

    u=Minimum(vertex) 

    a.j=u 

    for i=0 to vertex-1 

     if e(u,i)!=0 and q.i>0 

      if e(u,i)<key.i 

       key.i=e(u,i) 

       predecessor.i=u 

    q.u=0 

 

3.1.2.2 Graphical representation and description 

The concept working behind Prim’s algorithm is to build MST with choosing one edge at 

a time. It then uses the tree currently built to make branches out from it. The final tree 

keeps the entire partial minimum spanning tree which keeps all the other components 

connected with one another. Here is given a graph with 8 vertices and 12 edges. With the 

help of this graph, Prim’s algorithm working process is shown below. 

       

(a) The original graph 
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(b) Prim’s algorithm first chooses an initial vertex. The smallest edge 

connected with this vertex is chosen to build MST. 

 

(c)  Prim then finds the smallest edge among the edges connected with the     

vertices a and b. So edge bc is chosen. 

    

(d) Prim then finds the next smallest edge among the edges connected with the 

vertices a, b and c. So edge ch is chosen. 
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(e) Prim then finds the another smallest edge among the edges connected 

with the vertices a, b, c and h. So edge hg is chosen. 

 

(f) Prim then finds the next smallest edge among the edges connected with 

the vertices a, b, c, h and g. So edge gf is chosen. 

 

(g) Prim then finds the other smallest edge among the edges connected 

with the vertices a, b, c, h, g and f. So edge fe is chosen. 
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(h) Prim then finds the next smallest edge among the edges connected with 

the vertices a, b, c, h, g, f and e. So edge de is chosen. And thus the 

optimal MST is created. 

 

Figure 3.1: Final Minimum Spanning Tree generated by using                             

Prim’s Algorithm. 

3.1.2.3 Time complexity 

We used adjacency list and binary heap to solve Prim’s algorithm. We came to find time 

complexity as the order  O(VlogV + ElogV) = O(ElogV) where V is the number of 

vertices and E is the number of edges of the given graph.  

The time could be reduced by using Fibonacci heap instead of binary heap and adjacency 

list. Then the time complexity becomes O(VlogV+E+V)=O(E+VlogV). 
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For sparse graphs, Prim’s algorithm works faster. As the number of vertex and edge 

increases and graph becomes more dense, Prim’s algorithm runs in linear time. 

 

3.2 Kruskalôs Algorithm for minimum spanning tree 

 

      3.2.1 History 

In February 1956 .  Jewish  American mathematician, statistician, computer scientist 

Joseph Bernard Kruskal, Jr.  first invented that MST problem can be solved in other 

ways. This algorithm was first published in the book named ‘Proceedings of the 

American Mathematical Society’ in the chapter called "On the Shortest Spanning Subtree 

of a Graph and the Traveling Salesman Problem".  From then this algorithm was named 

after Kruskal and became popular as Kruskal’s Algorithm.  

 

      3.2.2 Algorithm 

3.2.2.1 Pseudocode of Kruskal algorithm 

  kruskal_algo(e,v) 

   make a disjoint set A which is initially empty 

   sort matrix e in non-decreasing order by weight 

   for each (u,v) of the sorted list 

    if findset(u)!=findset(v) 

     A←A  ᷾(u,v) 

     union (u,v) 

   return A 

 

3.2.2.2 Graphical representation and description 

 

The concept working behind Kruskal’s algorithm is to build MST with choosing 

smallest edge among all the edges present in the graph in each step. This algorithm 

checks if any cycle is formed in currently built structure that would going to be part of the 

MST. If no cycle is formed then it picks the edge and adds to the structure. If the 

algorithm finds two edges of same value then it chooses one arbitrarily and again checks 
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for any cycle. It works in the same way until the resultant structure has (V-1) edges where 

V is the number of vertices. Thus it gets the optimal Minimum Spanning Tree.  

Here is given a graph with 8 vertices and 12 edges. With the help of this graph, Kruskal’s 

algorithm working process is shown below. 

      

(a) The original graph 

        

(b) gf and ed are the smallest weighted edges in the graph. So kruskal’s 

algorithm picks one edge arbitrarily. So here gf is chosen.  
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( c ) Now the shortest edge that does not form a cycle is edge ed. So the 

algorithm chooses ed. 

   

( d ) In the same way next smallest edge ch is picked. 

 

( e ) Next edge fe is picked as it is the next smallest edge  
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( f ) As the next smallest edge becomes gh so it is picked. In the next step 

both ab and ce have the same weight. The algorithm discards ce as it 

creates a cycle so ab is chosen. 

 

(g) edge hf having the weight 6 is the next smallest weight but as it creates 

a cycle, the edge is discarded.  Same thing happened with cd having the 

weight 7. So the algorithm chooses edge bc with the weight 8. The 

algorithm stops working in this stage as it finds (V-1) here 8-1=7 edges for 

the graph.  
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Figure 3.2: The final Minimum Spanning Tree generated by using 

Kruskal’s Algorithm.   

 

3.2.2.3 Time Complexity 

The time complexity of Kruskal’s Algorithm is O(E log E) or O(E log V) where V is the 

number of vertex and E is the number of edge. The two main properties of Kruskal’s 

algorithm are sorting the edges and making union of the edges. It takes O(E log E) time 

for sorting the edges and O(log V ) time for applying union to the edges. As the value of 

E is almost O(V
2
), so O(LogV) = O(LogE) .  

 

3.3 Dijkstraôs algorithm for Single Source Shortest Path 

      3.3.1 History 

In 1959 Edsger Wybe Dijkstra (1930-2002) invented a systemic way to find the shortest 

path in a graph between any two given nodes. He published in a 3-page article named 'A 

note on two problems in connexion with graphs', where the algorithm was described. 

Since then this algorithm was known as Dijkstra’s Algorithm and it has become the 

underlying theory for all other single source shortest path algorithm for general directed 

and undirected graphs. 

Many authors proposed different modification of Dijkstra’s algorithm by reducing the run 

time using heuristics. 
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3.3.2 Algorithm  

3.3.2.1 Pseudocode of dijkstra algorithm 

function Dijkstra(e, s) 

  create vertex set qi 

  for each vertex v in e 

            distance[v] ← ∞   

predecessor[v] ← -1  

            add v to qi       

   distance[s] ← 0     

   while qi is not empty 

              u ← vertex in qi with min distance[u]  

              remove u from qi 

              for each neighbor v of u  

             b ← distance[u] + len(u, v) 

                        if b <distance[v]  

      distance[v] ← b  

      predecessor [v] ← u   

   return distance[],predecessor [] 
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3.3.2. 2 Graphical representation and description 

Dijkstra’s Algorithm can work in both directed and undirected connected graph having 

non negative weights. Initially this algorithm marks the source vertex with 0 and other 

vertices with infinity (∞).Then it assigns all the vertices connected with the source with 

their respective weight which becomes their tentative distance and chooses a vertex 

having least tentative distance. Now in the same way the distances of all other vertices 

connected with this particular vertex will be assigned or updated. If the calculated 

distance of a vertex becomes larger than the previous tentative distance, the value will not 

be updated whereas if the calculated value is lesser than the previous tentative value, the 

value will get updated. For a problem where the destination of the graph is given, the 

algorithm stops when it finds the final updated value of the destination vertex. For 

problems of finding the smallest path of all the vertices from the source vertex, the 

algorithm stops when the final distance all the vertices are found. 

We will use a weighted graph of 5 vertices and 8 edges to show how the algorithm works. 

                                          

(a)The original graph where cost for source is assigned as 0 and Ð is assigned as 

the costs of other vertices. 
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(b) From source a, vertices b and c are reachable. So respectively the costs of 

vertex b and vertex c are updated as 4 and 2. 

                                           

(c)Here vertex c having the smallest weight gets chosen. From c vertices d and e 

are reachable with cost of 6 and 7 respectively which are smaller than Ð. For 

vertex b, it is accessible from c with a cost of 3, which is smaller than the previous 

value 4. 
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(d)Here vertex b is picked. Vertex d and vertex e are accessible from vertex b with 

costs which are lower than their previous costs. So the costs for both vertex d and 

vertex e are updated. 

                                              

(e)In this step vertex d has the lowest cost among the other vertices which are 

unvisited or whose costs are not finalized. Vertices b, c and e are accessible but 

their costs are not updated. If we want to update the cost of c from d the cost will 

be 5+4 = 9 which is larger than the current cost of vertex c. Same goes for vertex 

b and vertex e. 
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(f)Vertex e is chosen. The costs of any connected vertices are not updated.  

                                                

      Figure 3.3: Final Shortest paths found using Dijkstra’s Algorithm 

 

3.3.2.3 Time Complexity 

If binary heap is used for Priority Queue implementation the time complexity will be 

O(E+V)*O(LogV) which is O((E+V)*LogV) = O(ELogV) as decrease-key operation 

takes O(Log n) time. Using Fibonacci Heap the complexity can be reduced to O(E + 

VLogV) as for decrease-key operation Fibonacci Heap takes O(1) time. 

 

 

      3.3.3 Real Life Application 

¶ Geographical maps, Google maps, IP routing, telephone network etc use this 

algorithm.  
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3.4 Bellman-Ford algorithm for Single Source Algorithm 

      3.4.1 History 

Bellman-Ford algorithm was first published in 1958 by Richard Bellman though it was 

proposed by Alfonso Shimbel in 1955. In 1956 Lester Ford Jr published the same 

algorithm. This is why the algorithm is called Bellman-Ford algorithm.  

      3.4.2 Algorithm  

3.4.2.1 Pseudocode of Bellamn-Ford algorithm 

Relex(u,v,e) 

   if d.v>d.u+e(u,v) 

    d.v=d.u+e(u,v) 

    r.v=u 

  Single_source(vertex) 

   for i=1 to vertex 

    d.i=10000 

    r.i=-1 

   d.0=0 

  Bellmanford_algo(e,vertex) 

   Single_source(vertex) 

   for i=0 to vertex-2 

    for u=0 to vertex-1 
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for v=0 to vertex-1 

      if e(u,v)!=0 

       Relex(u,v,e) 

for u=0 to vertex-1 

    for v=0 to vertex-1 

     if d.v>d.u+e(u,v) 

      return False    // Negative cycle is detected  

   return True 

3.4.2.2 Graphical representation and description 

                                   

(a) The original graph where cost for source is assigned as 0 and Ð is assigned as the 

costs of other vertices. 
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(b) From source a, vertices b and c are reachable. So respectively the costs of vertex b 

and vertex c are updated as 9and 8.  

                                   

( c ) Pick any of the vertices between b and c. Here b is chosen. From b vertices d 

and e are reachable with cost of 7 and 6 respectively which are smaller than Ð. So 

the distances are updated.  
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(d)  Next c is chosen and the distance of the vertices from c are calculated. 

Simultaneously  it checks if there is any negative cycle.  

                                       

(e)  As the next vertex, d is chosen. In the same way the connected distances are 

calculated and updated only when the distances are smaller than the previous one.  
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(f) In the same way e is chosen and worked like the previous steps. After this 

iteration all the distances are updated as the smallest distances among them. This 

iteration will be done V-1 times. 

                                       

 Figure 3.4: Final Shortest paths for 1
st
 iteration using Bellman-Ford  Algorithm 

 

3.4.2.3 Time Complexity 

Time complexity of Bellman-Ford is higher than that of Dijkstra’s Algorithm. This is 

because it relaxes all the edges rather than the connected edges and also it checks for 

negative cycles. So time complexity becomes O(VE).   

 

      3.4.3 Real Life Application 

¶ This algorithm is used in distance-vector routing protocol and within a system 

it is used as interior gateway routing.  

3.5 Knapsack  

Knapsack is an optimization problem. In the knapsack problem a set of items are given 

with their respective weights and values followed by the storage capacity that needs to be 

filled by the given items which is called knapsack. Maintaining the capacity the knapsack 

should be filled with the items in such a way that the sum of the values are maximized.  
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3.5.1 History 

By looking deep to the history of knapsack it is found that mathematician Tobias 

Dantzig’s (1884–1956) worked problems were similar to the knapsack properties. His 

works were known to as commonplace problem. As the problem is related to fill the 

knapsack with the most valuable goods that is why the problem is named ‘Knapsack 

problem’. 

      3.5.2 Types 

3.5.2.1 Fractional Knapsack:  

The idea behind fractional knapsack is that it allows to take fraction of item if the whole 

item exceeds the capacity. In fractional knapsack the cost per weight ratio is used to sort 

the given goods in non decreasing order. One by one the goods are picked to fill the 

capacity of the bag. By following this strategy it gives the best optimal result.  

3.5.2.1.1 Pseudocode of fractional knapsack  

element[],unit[],w[],cost[] //These are global array used in this algo 

 Insertion_sort(item) 

  for j=1 to item-1  

   key=unit.j  

   key1=cost.j 

   key2=w.j 

   key3=element.j 

   i=j-1 

   while i>=0 and unit.i<key 

    unit.i+1=unit.i  
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    cost.i+1=cost.i  

    w.i+1=w.i  

    element.i+1=element.i  

    i=i-1 

   unit.i+1=key 

   cost.i+1=key1 

   w.i+1=key2 

   element.i+1=key3 

 Knapsack_algo(item,sack) 

  for i=0 to item-1 

   unit.i=cost.i/w.i 

  Insertion_sort(item) 

  for i=0 to item-1 

   if bag>=sack 

    break 

   elseif bag+w.i<=sack 

    bag+=w.i 

    total+=cost.i  
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else 

    temp=sack-bag 

    bag+=temp 

    total+=temp*unit.i  

3.5.2.1.2 How it works 

       

Figure 3.5: Fractional knapsack’s working process 

Firstly items are sorted in ascending order according to the cost per weight ratio. The 

ratios of the items are respectively 6, 5, 4 and the knapsack capacity being 50 kg. First 

item 1 is chosen. Item 2 has the second highest ratio so it is placed in the bag. The bag’s 

remaining capacity becomes 50-30=20 kg but item 3 is of 30kg. As item 3 exceeds the 

capacity of the bag, here fractional knapsack takes the fraction of item 3. So it will take 

remaining capacity/weight of item 3 which is 20/30 kg and the cost becomes 

(20/30)*$120 = $80. Thus the bag is filled and the cost becomes $60+$100+$80=$240 

which the highest and most optimal cost. 
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3.5.2.2 0-1 Knapsack: 

The objective of 0-1 knapsack is that it will take given items in such a way that 

maximizes the profit and does not exceed the capacity of the sack. The main concept is 

that the algorithm takes item as a whole or not at all concentrating on the sack’s capacity. 

So weight of the items has to be less or exactly equal to the boundary of the sack. It 

strictly prevents to take the fraction of an item. So 0-1 knapsack works in binary way 

such as keep it or leave it. This is the reason of the algorithm being called as 0-1 

knapsack. Unlike fractional knapsack, 0-1 knapsack does not follow greedy algorithm. As 

the algorithm does not follow greedy approach and so optimal solution is never 

guaranteed.  

 

3.5.2.2.1 Pseudocode of 0-1 knapsack  

element[],w[],cost[] //This are global array used in this algo 

 Insertion_sort(item) 

  for j=1 to item-1  

   key1=cost.j 

   key2=w.j 

   key3=element.j 

   i=j-1 

   while i>=0 and cost.i<key1 

    cost.i+1=cost.i  

    w.i+1=w.i  

    element.i+1=element.i  

    i=i-1 

   cost.i+1=key1 

   w.i+1=key2 

   element.i+1=key3 

 Knapsack01_algo(item,sack) 

  Insertion-sort(item) 

  for i=0 to item-1 

   if bag>=sack 

    break 

   elseif bag+w.i<=sack 
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    bag+=w.i  

    total+=cost.i  

   else 

    y=i+1 

    for ii=y to item-1 

     if bag+w.ii<=sack 

      bag+=w.ii  

      total+=cost.ii 

3.5.2.2. 2 How it works 

 

    Figure 3.6: 0-1 Knapsack’s working process  

 

In a knapsack problem every items are associated with their weight and cost. The goal is 

to take the items within the sack’s capacity and to maximize the cost. In the first run the 

problem can be solved using the properties of Greedy algorithm. As like fractional 

knapsack idea, the items are sorted in decreasing order by the ratio of their cost per 

weight. So the first item is the item having weight 10kg. 0-1 knapsack will take the item 

and then check if the capacity is full. The algorithm then picks the second item with 

weight 20kg and put it into the sack. After that, when it checks the sack capacity it is 

found that the remaining capacity becomes 50-30=20kg  and that the weight of the 

third item exceeds that capacity. 0-1 Knapsack cannot take only a part of the third item. 
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So necessarily it will leave the third item and terminate the program. The final result 

shows the cost $160 which is not optimal nor the maximum cost. Clearly 0-1 Knapsack 

problem cannot be solved by following Greedy Algorithm. 

Here comes the second run where 0-1 Knapsack problem is solved in other way where 

the cost is maximized. The items are sorted in decreasing order by their cost. The item 

having the highest cost is picked and inserted into the sack. If the sack capacity is not 

filled, it then chooses the next item having second highest cost which is the item with cost 

$100. If the item does not exceed the sack capacity it is inserted or else the algorithm 

searches for next item that can be fit to the remaining capacity. As the given sack is filled 

with first two items, the program will stop here. Here the final cost is $120+$100=$220. 

This cost is clearly greater than the one solved by using Greedy algorithm.  

 The algorithm is terminated when the sack capacity is full or there is no other item in the 

list to fill the remaining capacity.  

 

3.6  File compression done with Huffman Coding 

 

      3.6.1 History  

The history behind the invention of Huffman coding is very interesting. It was invented 

by David Huffman in 1951. He submitted it as final term paper to his professor Robert 

Fano who was having trouble in solving the problem similar to this.   

 

      3.6.2 Algorithm 

It reads characters from the file and calculates frequencies for each character. It prepares 

leaf node for each character and puts it in priority queue. Then extracts each node, 

combine their frequencies and again puts it in the priority queue. This process stops when 

there is only one node. From this tree the compressed file size is calculated and compared 

with the original size.  

 

3.6.2.1 Pseudocode of Huffman coding 

 a[],b[]       //Global array 

 before_insert() 

  freopen("huff.txt","r",stdin) 

  while c=getchar() !=EOF 
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   j=(int)c 

   a.j=a.j+1 

 

 ori_bit() 

  i=cc 

  j=ceil(log i/log 2) 

  pp=(int)j 

 

 del() 

  if start!=NULL 

   t=head 

   head=head->NULL  

   t->next=NULL  

  return t 

 

 summ(j) 

  tt=tt+j  

 

 printArray(ints,countt,lan) 

  j=(countt-1)*ints.len-1 

  summ(j) 

 

 printPathsRecur(node,countt,path,pathLan) 

  if node==NULL 

   return 

  path.pathLan=node->freq  

  pathLan++ 

  countt++ 

  if node->left==NULL and node->right==NULL 

   printArray(path,countt,pathLan) 

  else 

   printPathsRecur(node->left,countt,path,pathLan) 

   printPathsRecur(node->right,countt,path,pathLan) 
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 printpaths(head) 

  printPathsRecur(start,0,path,0) 

   

 showchild(head) 

  if temp==NULL 

   return 

  if temp->left!=NULL 

   print(temp->name,temp->freq,temp->left->name,temp->left-

>freq,temp->right->name,temp->right->freq) 

  else  

   print(temp->name,temp->freq) 

  showchild(temp->left) 

  showchild(temp->right) 

 

 main  

head=NULL 

       before_insert() 

  for i=0 to 1000 

   if a.i!=0 

    b.0=(char)i  

    j=a.i  

    strncpy(z->name,b,1) 

    z->freq=j  

    z->next=NULL 

    z->left=NULL 

    z->right=NULL 

    cc++ 

    insert(head,z) 

  show() 

  ori_bit() 

  while(head->next!=NULL) 

   p=del(head) 
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   q=del(head) 

   strcpy(r->name,"-") 

   r->freq=p->freq+q->freq 

   r->next=NULL 

   r->left=p 

   r->right=q  

   insert(head,r) 

  final=head->freq 

  j=pp*final 

  printpaths(head) // tree teavarse and count the comressed number 

   

if tt<j //tt=Compressed number 

   print(compresed) 

   o=final*8 

   oo=((o-tt)/o)*100 //Percentahe compressed 

  else  

   print(not compresed) 

  showchild(head) 
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3.6.2. 2Graphical representation and description 

    

   

 

    Figure 3.7: Huffman working process 
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        Figure 3.8: Compression calculation of Huffman coding 

 

3.6.2.3 Work Process: 

a) Inserting characters: 

The algorithm first reads a file and count different character’s frequencies which are 

stored in an array. Iteratively the characters are inserted along with their frequencies in a 

linked list in ascending order. 

b) After insertion the numbers of all the new nodes are counted and converted into 

how many bits they need to be represented. This is needed to compute the 

compression size. For ‘engineering’ the algorithm has created 5 nodes. 5 is then 

converted into bits by log5/log2 , takes the ceil value (3) and it is stored. 

c) Creating child: 

From the linked list, the first and second nodes are picked and their frequencies 

are summed. So node ‘r’ and node ‘i’ are picked then inserted into a new node 

with no name and summed frequency. Following that this new node has a left 

child being the node ‘r’ and right being the node ‘i’. Then this new node is 

inserted into the linked list. This process is continued until there is only one node 

in the linked list.  

d) Evaluating compression: 

The root of the final tree structure has frequency of 11. This is multiplied by 3 and it is 

stored. The result becomes 33 bit. 
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 Secondly the frequency of each character is multiplied by their length in the tree 

structure. Here character ‘e’ with frequency 3 is multiplied by its length in the tree 2. This 

is done for all the different characters and all their results are added. This result being 25 

bit.  

Clearly the file has been compressed from 33 to 25 bit. Percentage of compression is then 

calculated which is 71.59% compressed.  
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Chapter 4 

Experiment 

4.1 Experimental Results 

 

      4.1.1 Minimum Spanning Tree 

We randomly generated undirected weighted graphs with various nodes and edges 

then performed Prim’s and Kruskal’s Algorithm with these graphs. The results are 

following.  

 

Number of  nodes  PrimȭÓ !ÌÇÏÒÉÔÈÍ KruskalȭÓ !ÌÇÏÒÉÔÈÍ  

100 0.016  0.187  

300  0.046  0.296  

500  0.068  0.374  

700  0.078  0.436  

900  0.084  0.546  

1000  0.094  0.592  

Table 4.1: Time complexity comparison between Prim’s and Kruskal’s 

Algorithm 
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Figure 4.1: Time complexity comparison shown in graph between Prim’s and 

Kruskal’s Algorithm 

 

Results Found: 

· Time complexity of both Prim’s Algorithm and Kruskal’s Algorithm is O(ElogV) 

. 

· Prim's algorithm works faster in really dense graph whereas Kruskal’s algorithm 

performs better in typical sparse graphs.  
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     4.1.2 Single Source Shortest Path 

                   

Table 4.2: Time complexity comparison between Bellman-Ford and    

Dijkstra’s Algorithm 

                                        

 

Figure 4.2: Time complexity comparison shown in graph between 

Bellman-Ford and Dijkstra’s Algorithm 
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Results Found:  

· In one iteration Bellman-Ford Algorithm relaxes all edges simultaneously but 

Dijkstra’s Algorithm being a greedy algorithm relaxes only the neighboring edges 

from the particular vertex. 

· Bellman-Ford Algorithm works for graphs having negative weights whereas 

Dijkstra’s Algorithm cannot function in this kind of graphs.  

· Bellman-Ford Algorithm can detect negative cycles, Dijkstra’s Algorithm doesn’t 

have this feature.  

· Bellman-Ford’s time complexity is higher which is O(VE), Dijkstra’s Algorithm’s 

time complexity being O(ELogV). 

 

4.2 Experiments with Different Instance  

      4.2.1 Piggy bank problem solved with 0-1 Knapsack 

 Problem:Suppose we have different types of coins. Those coins have specific 

quantity and volume for example: the number of 5 taka coin is 20 and each coin’s volume 

is 1.06. We have a given piggy bank that we have to fill with different type of coin and 

the sum of the coins has to be maximum.  

                         

   Table 4.3: Problem instance for 0-1 knapsack 

      4.2.1.1 Algorithm 

Coin(item,sack) 

      Insertion_sort(item) 

      if i=0 to item-1 

cc=quantity.i  

if bag>=sack 

     break 
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elseif bag+(quantity.i*volume.i)<=sack  

      bag+=volume.i*quantity.i  

      total+=cost.i*quantity.i  

elseif bag+(quantity.i*volume.i)>sack 

      for ss=0 to cc-1 

quantity.i=quantity.i-1 

      if bag+(quantity.i*volume.i)<=sack 

bag+=volume.i*quantity.i  

total+=cost.i*quantity.i  

break  

     4.2.1.1 Work Process 

1. All the coins are sorted in descending order according to the costs of each coin. 

2. First it checks if the numbers of coins taken exceeds the capacity of the piggy bank. 

3. If not, it will take all the coins available and puts in the bank. 

4. If the volume of the certain number of coins exceeds the volume of the bank, the 

algorithm tries to take some of the coins. 

5. The algorithm calculates total cost and numbers of each coin taken. 

     4.2.2 Meal Problem solved with Fractional knapsack  

Problem: Suppose we have number of food items and limited consumption 

capacity. Our goal is to eat every given food item in a way that will maximize the calorie 

consumed.  

                      

           Table 4.4: Problem instance for fractional knapsack  
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      4.2.2.1 Algorithm 

Meal_algo(item,sack) 

     for i=0 to item-1 

unit.i=cost.i/w.i  

    for i=0 to item-1 

per.i=(w.i/weightsum)*sack   

    Insertion-sort(item) 

    for i=0 to item-1 

if bag>=sack 

      break 

else 

      bag+=per.i  

      total+=per.i*unit.i  

      amountsum+=per.i  

      4.2.2.2 Work Process: 

1. The meal items are sorted in descending order according to their cost per weight ratio.  

2. In relevant to the consumer’s capacity, the maximum quantity of each item that the 

consumer can eat has been calculated. So now all the items quantity will be within the 

consumer’s capacity. 

3. It then checks if the number of items taken exceeds the consumer’s capacity. 

4. If not, it takes the whole item as calculated before because the items are already within 

the consumer’s capacity. 

5. The algorithm stops when the consumer’s capacity is reached.  

4.3 Innovation  

Solving MST with Greedy Approach and Genetic Algorithm 

     4.3.1 Properties of Genetic Algorithm used 

  The core properties: 

¶ Initial population 

¶ Fitness function 

¶ Selection 

¶ Crossover 

¶ Mutation 
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Among these properties we used:  

¶ Initial population 

¶ Fitness function 

¶ Mutation 

 

1. Initial candidate  

                    

The weights of the given graph are sorted in descending order and stored in an array. 

Basically this array is the initial candidate. In each iteration the arrangement of the array 

is changed and thus new candidates are generated. All the different candidates produce 

population in the problem.  

2. Fitness function 

Each candidate generates a spanning tree. The sum of all weights of edges in that 

spanning tree is the fitness of that particular spanning tree. Every other candidates 

generate different spanning tree thus all their fitness are calculated. As the goal is to 

determine the minimum spanning tree, so the least fitness value is chosen with its 

corresponding spanning tree.  

3. Mutation 
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In every iteration one element of the initial candidate is changed by performing left 

rotation operation. By doing so it creates a variation in the candidate pool. This allows to 

create spanning tree of different fitness and creates large search space.  

4. Termination  

As the mutation happens by doing left rotation operation so when the algorithm has 

performed iteration which is equal to the number of edges in the graph, the algorithm is 

terminated and the solution is found. 

      4.3.2Graphical Representation and Description:  

 

(a) The original graph 
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(b) The algorithm first chooses first element from the initial candidate. It 

eliminates the edge and checks if still the graph is connected. If the graph 

becomes disconnected, the algorithm does not eliminate the edge. 

 

              

 

( c ) Then it chooses the next element from the candidate and checks the same. 

 

                

(d) Here 8 is chosen but eliminating this edge will cause an island in the graph so 

the algorithm doesn’t eliminate it. The process is continued until the last element 

of the candidate is checked. 
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Figure 4.3: The spanning tree after first iteration 



59 

 

                      

 

Figure 4.4: Left rotation to change the combination of initial candidate after first 

iteration. 

 

 

 

 



60 

 

Chapter 5 

Conclusion and Future Works 

· Conclusion and current status 

We studied some Greedy Algorithms such as Knapsack problem, Huffman 

coding. We explored some area of graph theory such as MST, single 

source shortest path. We tried to combine Greedy and Genetic Algorithm 

to implement an algorithm that solved MST problem. Our current 

implementation of GA takes longer time compared to any other 

algorithms. Also, it is not matured enough to work with huge data set.  

· Future works 

In future we want to implement GA with all of its core properties to get 

better result. We will make it work for large data set and solve problem 

within reasonable time. We hope it will be efficient enough to work with 

directed graph in the cases where Kruskal’s and Prim’s Algorithm might 

have some limitations.  
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