

Study on Selected Greedy

Algorithms

Fairooz Maliha Rahman

Student Id:011132010

Supta Bhowmick

Student Id:011132020

Luthfun Naher Eva

Student Id:011132037

Anwara Khatun Anu

Student Id:011052003

A Thesis in The Department

of

Computer Science and Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Bachelor of Science in Computer Science and Engineering

United International University

Dhaka, Bangladesh

January 2018

2

Approval Certificate

This thesis titled "Study on Selected Greedy Algorithms” submitted by [Fairooz Maliha

Rahman], Student ID: [011132010], [Supta Bhowmick], Student ID: [011132020],

[Luthfun Naher Eva], Student ID: [01132037], [Anwara Khatun Anu], Student ID:

[011052003] has been accepted as Satisfactory in fulfillment of the requirement for the

degree of Bachelor of Science in Computer Science and Engineering on [January 2018].

Board of Examiners

1. Dr. Mohammad Nurul Huda

 Professor and MSCSE Coordinator

______________________________ Supervisor

2. Dr. Swakkhar Shatabda

Associate Professor and Under Graduate Coordinator

______________________________ Head Examiner

3. Dr. Salekul Islam

 Associate Professor and Departmental Head

______________________________ Ex-Officio

3

Declaration

This is to certify that the work entitled “Study on Selected Greedy Algorithms" is the

outcome of the research carried out by us under the supervision of Pro.Dr. Mohammad

Nurul Huda, Professor & MSCSE Coordinator, Dept.of CSE.

__

Fairooz Maliha Rahman, Student ID:011132010, Dept. of CSE

Supta Bhowmick, Student ID:011132020, Dept. of CSE

Luthfun Naher Eva, Student ID:011132037, Dept. of CSE

Anwara Khatun Anu, Student ID: 011052003, Dept. of CSE

In my capacity as supervisor of the candidates’ thesis, I certify that the above statements

are true to the best of my knowledge.

__

Pro.Dr. Mohammad Nurul Huda

Professor & MSCSE Coordinator

Dept.of CSE

4

Abstract

We studied some Greedy Algorithms, implemented to observe the in depth

functionalities. We used the main idea of Knapsack problem to solve some problems

which are inspired by real life applications. Afterwards we thought of implementing MST

with Genetic Algorithm. Genetic Algorithm is one of the most evolutionary methods in

the field of computer science for solving optimization problem. With the help of Genetic

Algorithm we designed an algorithm that makes it possible to solve MST problems more

efficiently.

5

Acknowledgement

We are indebted to Almighty Allah for the favor that we could conclude our thesis work.

We are really obliged to our honorable supervisor Dr. Mohammad Nurul Huda,

Professor, Department of Computer Science and Engineering. His sincere, valuable

guidance and encouragement helped us to reach in this position. Our thesis work was

more reinforced by his assistance and dedicated involvement.

We express our sincerest respect to all of the Department faculty members for their

encouragement and cooperation. We would like to thank you very much for all of your

advice and support over these years.

6

Table of Contents

LIST OF TABLES…..…………………………………………………………….........9

 LIST OF TABLES…………………………………………………………………….10

 1. Introduction…………………………………………………………………………11

 2. Background…………………………………………………………………………12

 2.1 Why we use Greedy Algorithms………………………………………………..12

 2.2 Why Greedy Algorithms fail……………………………………………………13

 2.3 Types……………………………………………………………………………13

 3. Selected Greedy Algorithm…………………………………………………………15

 3.1 Prim’s Algorithm for Minimum Spanning Tree………………………………..15

 3.1.1 History……………………………………………………………………...15

 3.1.2 Algorithm…………………………………………………………………..15

 3.1.2.1 Pseudocode of Prim’s Algorithm……………………….…………….15

 3.1.2.2 Graphical Representation and Description……………………………16

 3.1.2.3 Time Complexity……………………………………………………..19

 3.2 Kruskal’s Algorithm for Minimum Spanning Tree…………………………….20

 3.2.1 History……………………………………………………………………...20

 3.2.2 Algorithm…………………………………………………………………..20

 3.2.2.1 Pseudocode of Kruskal’s Algorithm………………………………….20

 3.2.2.2 Graphical Representation and Description……………………………20

 3.2.2.3 Time Complexity……………………………………………………..24

 3.3 Dijkstra’s Algorithm for Single Source Shortest Path………………………….24

 3.3.1 History……………………………………………………………………...24

7

 3.3.2 Algorithm…………………………………………………………………..25

 3.3.2.1 Pseudocode of Dijkstra’s Algorithm………………………………….25

 3.3.2.2 Graphical Representation and Description……………………………26

 3.3.2.3 Time Complexity……………………………………………………..29

 3.3.3 Real Life Application………………………………………………………29

 3.4 Bellman-Ford Algorithm for Single Source Shortest Path……………………..30

 3.4.1 History……………………………………………………………………...30

 3.4.2 Algorithm…………………………………………………………………..30

 3.4.2.1 Pseudocode of Bellman-Ford Algorithm……………….…………….30

 3.4.2.2 Graphical Representation and Description……………………………31

 3.4.2.3 Time Complexity……………………………………………………..34

 3.4.3 Real Life Application………………………………………………………34

 3.5 Knapsack………………………………………………………………………..34

 3.5.1 History……………………………………………………………………...35

 3.5.2 Types……………………………………………………………………….35

 3.5.2.1 Fractional knapsack…………………………………………………...35

 3.5.2.1.1 Pseudocode of Fractional knapsack …………………………...35

 3.5.2.1.2 How it works…………………………………………………...37

 3.5.2.2 0-1 Knapsack………………………………………………………….38

 3.5.2.1.1 Pseudocode of 0-1 Knapsack.…………………..……………...38

 3.5.2.1.2 How it works…………………………………………………...39

 3.6 File compression done with Huffman Coding …………………………………40

 3.6.1 History……………………………………………………………………...40

 3.6.2 Algorithm…………………………………………………………………..40

 3.6.2.1 Pseudocode of Huffman Coding ………………………….………….40

8

 3.6.2.2 Graphical Representation and Description……………………………44

 3.6.2.3 Work Process…………………………………………………………45

 4. Experimental Results……………………………………………………………….47

4.1 Experimental Results………………………………………………………...47

 4.1.1 Minimum Spanning Tree…………………………..………………….47

 4.1.2 Single Source Shortest Path…………………..……………………….49

4.2 Experiments with Different Instances………………………………..……...50

 4.2.1 Piggy Bank Problem Solved with 0-1 Knapsack…………....…………50

 4.2.1.1 Algorithm………………………………………………………...50

 4.2.1.2 Work Process…………………………………………………….51

 4.2.2 Meal Problem solved with Fractional Knapsack………………………...51

 4.2.2.1 Algorithm………………………………………………………...52

 4.2.2.2 Work Process…………………………………………………….52

 4.3 Innovation……………………………………………………………………52

 4.3.1 Properties of Genetic Algorithm used………………………………….52

 4.3.2 Graphical Representation and Description……………………………..54

 5. Conclusion and Future Works………………………………………………………60

 6. References…………………..………………………………………………………61

9

List of Tables

 Table 4.1: Time complexity comparison between Prim’s and Kruskal’s Algorithm…47

 Table 4.2: Time complexity comparison between Bellman-Ford and Dijkstra’s

 Algorithm…………………………………………………………………..49

 Table 4.3: Problem instance for 0-1 knapsack…………………………………….......50

 Table 4.4: Problem instance for fractional knapsack…………………….……………51

10

List of Figures

 Figure 2.1 How Greedy Algorithm fails to obtain Optimal Solution…………………13

 Figure 3.1 Final Minimum Spanning Tree generated by using Prim’s Algorithm……19

 Figure 3.2 Final Minimum Spanning Tree generated by using Kruskal’s Algorithm...24

 Figure 3.3 Final Shortest path found by using Dijkstra’s Algorithm………………….29

 Figure 3.4 Final Shortest Path for 1
st
 iteration by using Bellman-Ford Algorithm…...34

 Figure 3.5 Fractional Knapsack’s Working Process……...…………………………...37

 Figure 3.6 0-1 Knapsack’s Working Process……...…………………………………..39

 Figure 3.7 Huffman Working Process……...…………………………........................44

 Figure 3.8 Compression Calculation of Huffman Coding.…………………………....45

 Figure 4.1: Time complexity comparison shown in graph between Prim’s and

 Kruskal’s Algorithm………………………………………..……………..48

 Figure 4.2: Time complexity comparison shown in graph between Bellman-Ford and

 Dijkstra’s Algorithm………………………………………………..……..49

 Figure 4.3: The spanning tree after first iteration……………………………………..58

 Figure 4.4: Left rotation to change the combination of initial candidate after first

 iteration……………………………………………………………………59

11

Chapter1

Introduction

Algorithms cannot be designed hoping to be the magical solution to a complicated

problem. Different techniques are requiered to solve different kind of problems. Greedy

algorithms are one of the techniques. Greedy algorithms make a locally-optimal choice

that will lead to a globally-optimal solution.

We have studied selected greedy algorithms which are Prim’s and Kruskal’s algorithms

for minimum spanning tree, Dijkstra’s and Bellman-Ford’s algorithms for shortest path.

We have also studied Knapsack problems and Huffman coding. Following the study we

tried to implement and solve minimum spanning tree problem. We used a variant of

Genetic algorithms to solve the problem.

In monitoring other Greedy Algorithms, it was seen that some Greedy algorithms do not

achieve best optimal solution in several cases as they seem to be short sighted. They have

only one chance to determine the optimal solution and thus the decision becomes

irrevocable. The main contribution of this paper is to determine such a Greedy Algorithm

that can overcome this weakness and can give the best optimal solution. The main goal is

to use some properties of genetic algorithm. We made different combinations of

elimination technique to make all possible spanning tree and furthermore picked the

spanning tree with the least objective function value. By doing so the possibility of

getting best optimal minimum spanning tree was increased.

12

Chapter 2

Background

For particular problem greedy algorithms takes decision based on the information they

have on that particular time. They emphasize on local analysis rather than global. As they

focus only on single basis to solve the problem they are called ‘greedy’.

2.1 Why we use greedy algorithm:

Generally if a problem contains an objective function and that needs to be optimized

which could be either minimization or maximization then greedy algorithms are suitable

candidate for it. While running, the Greedy algorithm makes greedy choices at each step

to make sure to optimize the objective function considering that it never goes back and

reverses decision.

Greedy Algorithms can solve problems having the following properties:

1. Greedy Choice Property

2. Optimal Substructure.

Also Greedy Algorithms solve combinatorial problems having the properties of matroid.

Considering the real life applications, Greedy Algorithms are used in various branches

such as:

¶ Internal Scheduling

¶ Minimization (Minimum spanning tree)

¶ Knapsack problems

¶ Data compression (Huffman)

¶ Gaming

¶ Coin change problems

¶ Optimal Merging

¶ Topological Sort

13

2.2 When Greedy Algorithms fail:

We know that greedy algorithms try to obtain local optimizations so that it can find

reasonable global solutions. But this property leads greedy algorithms to fail in some

cases. So sometimes they tend to find solutions that are even less than optimal solutions

or sub optimal solutions. Such case happened in the following scenario.

 Figure 2.1: How Greedy Algorithm fails to obtain optimal solution

In this scenario we wanted to find the largest sum. At each step they consider the

information that they have. So at the beginning they choose 14 as it appears to be larger

than other neighbors. Further they approach the path where they find the largest value.

Which is 8+14+7= 29. But this value is not the largest sum. The best solution would be

8+5+58 = 71. As Greedy Algorithms only emphasize to the local space instead of global

space, they gradually fail to gain the best solution. For this property Greedy Algorithms

are often called ‘short sighted’.

2.3 Types:

Standard:

1. Huffman Coding

2. Job Sequencing Problem

3. Egyptian Fraction

4. Efficient Huffman Coding for sorted input

5. Activity Selection Problem

14

Graph Theory:

Minimum Spanning Tree:

1. Prim’s Algorithm (Minimum Spanning Tree)

2. Kruskal’s Algorithm (Minimum Spanning Tree)

3. Reverse delete algorithm (Minimum Spanning Tree)

4. Boruvka’s Minimum Spanning Tree

5. Dial’s Algorithm

Shortest Path:

1. Dijkastra’s Algorithm (Shortest Path)

2. Bellman-Form Algorithm (Shortest Path)

Adjacency List Representation:

1. Dijkstra’s Adjacency List Representation

 2. Prim’s adjacency list representation

Operating Systems:

Scheduling:

¶ Shortest Job First

Memory Management:

1. Best Fit algorithm

2. First Fit algorithm

3. Worst Fit algorithm

15

Chapter 3

Selected Greedy Algorithm

3.1 Primôs Algorithm for minimum spanning tree

 3.1.1 History

In 1930 Prim’s algorithm was developed by mathematician Vojtěch Jarník. But it

was not renowned and famous that time. Later in 1957 computer scientist Robert

C. Prim rediscovered and republished it. 2 years later in 1959, another scientist

Edsger W. Dijkstra did the same. Prim’s algorithm is called by many names such

as the Prim–Jarník algorithm, DJP algorithm, Jarník's algorithm or the Prim–

Dijkstra algorithm.

 3.1.2 Algorithm

 3.1.2.1 Pseudocode of prim’s algorithm

Minimum(vertex)

 n=INT_MAX

 for i=0 to vertex-1

 if q.i>0 and key.i<n

 n=key.i

 k=i

 return k

 Prime_algo(e,v)

 for i=0 to vertex-1

 key.i=INT_MAX

 predecessor.i=-1

 q.i=1

 key.0=0

16

 for j=0 to vertex-1

 u=Minimum(vertex)

 a.j=u

 for i=0 to vertex-1

 if e(u,i)!=0 and q.i>0

 if e(u,i)<key.i

 key.i=e(u,i)

 predecessor.i=u

 q.u=0

3.1.2.2 Graphical representation and description

The concept working behind Prim’s algorithm is to build MST with choosing one edge at

a time. It then uses the tree currently built to make branches out from it. The final tree

keeps the entire partial minimum spanning tree which keeps all the other components

connected with one another. Here is given a graph with 8 vertices and 12 edges. With the

help of this graph, Prim’s algorithm working process is shown below.

(a) The original graph

17

(b) Prim’s algorithm first chooses an initial vertex. The smallest edge

connected with this vertex is chosen to build MST.

(c) Prim then finds the smallest edge among the edges connected with the

vertices a and b. So edge bc is chosen.

(d) Prim then finds the next smallest edge among the edges connected with the

vertices a, b and c. So edge ch is chosen.

18

(e) Prim then finds the another smallest edge among the edges connected

with the vertices a, b, c and h. So edge hg is chosen.

(f) Prim then finds the next smallest edge among the edges connected with

the vertices a, b, c, h and g. So edge gf is chosen.

(g) Prim then finds the other smallest edge among the edges connected

with the vertices a, b, c, h, g and f. So edge fe is chosen.

19

(h) Prim then finds the next smallest edge among the edges connected with

the vertices a, b, c, h, g, f and e. So edge de is chosen. And thus the

optimal MST is created.

Figure 3.1: Final Minimum Spanning Tree generated by using

Prim’s Algorithm.

3.1.2.3 Time complexity

We used adjacency list and binary heap to solve Prim’s algorithm. We came to find time

complexity as the order O(VlogV + ElogV) = O(ElogV) where V is the number of

vertices and E is the number of edges of the given graph.

The time could be reduced by using Fibonacci heap instead of binary heap and adjacency

list. Then the time complexity becomes O(VlogV+E+V)=O(E+VlogV).

20

For sparse graphs, Prim’s algorithm works faster. As the number of vertex and edge

increases and graph becomes more dense, Prim’s algorithm runs in linear time.

3.2 Kruskalôs Algorithm for minimum spanning tree

 3.2.1 History

In February 1956 . Jewish American mathematician, statistician, computer scientist

Joseph Bernard Kruskal, Jr. first invented that MST problem can be solved in other

ways. This algorithm was first published in the book named ‘Proceedings of the

American Mathematical Society’ in the chapter called "On the Shortest Spanning Subtree

of a Graph and the Traveling Salesman Problem". From then this algorithm was named

after Kruskal and became popular as Kruskal’s Algorithm.

 3.2.2 Algorithm

3.2.2.1 Pseudocode of Kruskal algorithm

 kruskal_algo(e,v)

 make a disjoint set A which is initially empty

 sort matrix e in non-decreasing order by weight

 for each (u,v) of the sorted list

 if findset(u)!=findset(v)

 A←A ᷾(u,v)

 union (u,v)

 return A

3.2.2.2 Graphical representation and description

The concept working behind Kruskal’s algorithm is to build MST with choosing

smallest edge among all the edges present in the graph in each step. This algorithm

checks if any cycle is formed in currently built structure that would going to be part of the

MST. If no cycle is formed then it picks the edge and adds to the structure. If the

algorithm finds two edges of same value then it chooses one arbitrarily and again checks

21

for any cycle. It works in the same way until the resultant structure has (V-1) edges where

V is the number of vertices. Thus it gets the optimal Minimum Spanning Tree.

Here is given a graph with 8 vertices and 12 edges. With the help of this graph, Kruskal’s

algorithm working process is shown below.

(a) The original graph

(b) gf and ed are the smallest weighted edges in the graph. So kruskal’s

algorithm picks one edge arbitrarily. So here gf is chosen.

22

(c) Now the shortest edge that does not form a cycle is edge ed. So the

algorithm chooses ed.

(d) In the same way next smallest edge ch is picked.

(e) Next edge fe is picked as it is the next smallest edge

23

(f) As the next smallest edge becomes gh so it is picked. In the next step

both ab and ce have the same weight. The algorithm discards ce as it

creates a cycle so ab is chosen.

(g) edge hf having the weight 6 is the next smallest weight but as it creates

a cycle, the edge is discarded. Same thing happened with cd having the

weight 7. So the algorithm chooses edge bc with the weight 8. The

algorithm stops working in this stage as it finds (V-1) here 8-1=7 edges for

the graph.

24

Figure 3.2: The final Minimum Spanning Tree generated by using

Kruskal’s Algorithm.

3.2.2.3 Time Complexity

The time complexity of Kruskal’s Algorithm is O(E log E) or O(E log V) where V is the

number of vertex and E is the number of edge. The two main properties of Kruskal’s

algorithm are sorting the edges and making union of the edges. It takes O(E log E) time

for sorting the edges and O(log V) time for applying union to the edges. As the value of

E is almost O(V
2
), so O(LogV) = O(LogE) .

3.3 Dijkstraôs algorithm for Single Source Shortest Path

 3.3.1 History

In 1959 Edsger Wybe Dijkstra (1930-2002) invented a systemic way to find the shortest

path in a graph between any two given nodes. He published in a 3-page article named 'A

note on two problems in connexion with graphs', where the algorithm was described.

Since then this algorithm was known as Dijkstra’s Algorithm and it has become the

underlying theory for all other single source shortest path algorithm for general directed

and undirected graphs.

Many authors proposed different modification of Dijkstra’s algorithm by reducing the run

time using heuristics.

25

3.3.2 Algorithm

3.3.2.1 Pseudocode of dijkstra algorithm

function Dijkstra(e, s)

 create vertex set qi

 for each vertex v in e

 distance[v] ← ∞

predecessor[v] ← -1

 add v to qi

 distance[s] ← 0

 while qi is not empty

 u ← vertex in qi with min distance[u]

 remove u from qi

 for each neighbor v of u

 b ← distance[u] + len(u, v)

 if b <distance[v]

 distance[v] ← b

 predecessor [v] ← u

 return distance[],predecessor []

26

3.3.2. 2 Graphical representation and description

Dijkstra’s Algorithm can work in both directed and undirected connected graph having

non negative weights. Initially this algorithm marks the source vertex with 0 and other

vertices with infinity (∞).Then it assigns all the vertices connected with the source with

their respective weight which becomes their tentative distance and chooses a vertex

having least tentative distance. Now in the same way the distances of all other vertices

connected with this particular vertex will be assigned or updated. If the calculated

distance of a vertex becomes larger than the previous tentative distance, the value will not

be updated whereas if the calculated value is lesser than the previous tentative value, the

value will get updated. For a problem where the destination of the graph is given, the

algorithm stops when it finds the final updated value of the destination vertex. For

problems of finding the smallest path of all the vertices from the source vertex, the

algorithm stops when the final distance all the vertices are found.

We will use a weighted graph of 5 vertices and 8 edges to show how the algorithm works.

(a)The original graph where cost for source is assigned as 0 and Ð is assigned as

the costs of other vertices.

27

(b) From source a, vertices b and c are reachable. So respectively the costs of

vertex b and vertex c are updated as 4 and 2.

(c)Here vertex c having the smallest weight gets chosen. From c vertices d and e

are reachable with cost of 6 and 7 respectively which are smaller than Ð. For

vertex b, it is accessible from c with a cost of 3, which is smaller than the previous

value 4.

28

(d)Here vertex b is picked. Vertex d and vertex e are accessible from vertex b with

costs which are lower than their previous costs. So the costs for both vertex d and

vertex e are updated.

(e)In this step vertex d has the lowest cost among the other vertices which are

unvisited or whose costs are not finalized. Vertices b, c and e are accessible but

their costs are not updated. If we want to update the cost of c from d the cost will

be 5+4 = 9 which is larger than the current cost of vertex c. Same goes for vertex

b and vertex e.

29

(f)Vertex e is chosen. The costs of any connected vertices are not updated.

 Figure 3.3: Final Shortest paths found using Dijkstra’s Algorithm

3.3.2.3 Time Complexity

If binary heap is used for Priority Queue implementation the time complexity will be

O(E+V)*O(LogV) which is O((E+V)*LogV) = O(ELogV) as decrease-key operation

takes O(Log n) time. Using Fibonacci Heap the complexity can be reduced to O(E +

VLogV) as for decrease-key operation Fibonacci Heap takes O(1) time.

 3.3.3 Real Life Application

¶ Geographical maps, Google maps, IP routing, telephone network etc use this

algorithm.

30

3.4 Bellman-Ford algorithm for Single Source Algorithm

 3.4.1 History

Bellman-Ford algorithm was first published in 1958 by Richard Bellman though it was

proposed by Alfonso Shimbel in 1955. In 1956 Lester Ford Jr published the same

algorithm. This is why the algorithm is called Bellman-Ford algorithm.

 3.4.2 Algorithm

3.4.2.1 Pseudocode of Bellamn-Ford algorithm

Relex(u,v,e)

 if d.v>d.u+e(u,v)

 d.v=d.u+e(u,v)

 r.v=u

 Single_source(vertex)

 for i=1 to vertex

 d.i=10000

 r.i=-1

 d.0=0

 Bellmanford_algo(e,vertex)

 Single_source(vertex)

 for i=0 to vertex-2

 for u=0 to vertex-1

31

for v=0 to vertex-1

 if e(u,v)!=0

 Relex(u,v,e)

for u=0 to vertex-1

 for v=0 to vertex-1

 if d.v>d.u+e(u,v)

 return False // Negative cycle is detected

 return True

3.4.2.2 Graphical representation and description

(a) The original graph where cost for source is assigned as 0 and Ð is assigned as the

costs of other vertices.

32

(b) From source a, vertices b and c are reachable. So respectively the costs of vertex b

and vertex c are updated as 9and 8.

(c) Pick any of the vertices between b and c. Here b is chosen. From b vertices d

and e are reachable with cost of 7 and 6 respectively which are smaller than Ð. So

the distances are updated.

33

(d) Next c is chosen and the distance of the vertices from c are calculated.

Simultaneously it checks if there is any negative cycle.

(e) As the next vertex, d is chosen. In the same way the connected distances are

calculated and updated only when the distances are smaller than the previous one.

34

(f) In the same way e is chosen and worked like the previous steps. After this

iteration all the distances are updated as the smallest distances among them. This

iteration will be done V-1 times.

 Figure 3.4: Final Shortest paths for 1
st
 iteration using Bellman-Ford Algorithm

3.4.2.3 Time Complexity

Time complexity of Bellman-Ford is higher than that of Dijkstra’s Algorithm. This is

because it relaxes all the edges rather than the connected edges and also it checks for

negative cycles. So time complexity becomes O(VE).

 3.4.3 Real Life Application

¶ This algorithm is used in distance-vector routing protocol and within a system

it is used as interior gateway routing.

3.5 Knapsack

Knapsack is an optimization problem. In the knapsack problem a set of items are given

with their respective weights and values followed by the storage capacity that needs to be

filled by the given items which is called knapsack. Maintaining the capacity the knapsack

should be filled with the items in such a way that the sum of the values are maximized.

35

3.5.1 History

By looking deep to the history of knapsack it is found that mathematician Tobias

Dantzig’s (1884–1956) worked problems were similar to the knapsack properties. His

works were known to as commonplace problem. As the problem is related to fill the

knapsack with the most valuable goods that is why the problem is named ‘Knapsack

problem’.

 3.5.2 Types

3.5.2.1 Fractional Knapsack:

The idea behind fractional knapsack is that it allows to take fraction of item if the whole

item exceeds the capacity. In fractional knapsack the cost per weight ratio is used to sort

the given goods in non decreasing order. One by one the goods are picked to fill the

capacity of the bag. By following this strategy it gives the best optimal result.

3.5.2.1.1 Pseudocode of fractional knapsack

element[],unit[],w[],cost[] //These are global array used in this algo

 Insertion_sort(item)

 for j=1 to item-1

 key=unit.j

 key1=cost.j

 key2=w.j

 key3=element.j

 i=j-1

 while i>=0 and unit.i<key

 unit.i+1=unit.i

36

 cost.i+1=cost.i

 w.i+1=w.i

 element.i+1=element.i

 i=i-1

 unit.i+1=key

 cost.i+1=key1

 w.i+1=key2

 element.i+1=key3

 Knapsack_algo(item,sack)

 for i=0 to item-1

 unit.i=cost.i/w.i

 Insertion_sort(item)

 for i=0 to item-1

 if bag>=sack

 break

 elseif bag+w.i<=sack

 bag+=w.i

 total+=cost.i

37

else

 temp=sack-bag

 bag+=temp

 total+=temp*unit.i

3.5.2.1.2 How it works

Figure 3.5: Fractional knapsack’s working process

Firstly items are sorted in ascending order according to the cost per weight ratio. The

ratios of the items are respectively 6, 5, 4 and the knapsack capacity being 50 kg. First

item 1 is chosen. Item 2 has the second highest ratio so it is placed in the bag. The bag’s

remaining capacity becomes 50-30=20 kg but item 3 is of 30kg. As item 3 exceeds the

capacity of the bag, here fractional knapsack takes the fraction of item 3. So it will take

remaining capacity/weight of item 3 which is 20/30 kg and the cost becomes

(20/30)*$120 = $80. Thus the bag is filled and the cost becomes $60+$100+$80=$240

which the highest and most optimal cost.

38

3.5.2.2 0-1 Knapsack:

The objective of 0-1 knapsack is that it will take given items in such a way that

maximizes the profit and does not exceed the capacity of the sack. The main concept is

that the algorithm takes item as a whole or not at all concentrating on the sack’s capacity.

So weight of the items has to be less or exactly equal to the boundary of the sack. It

strictly prevents to take the fraction of an item. So 0-1 knapsack works in binary way

such as keep it or leave it. This is the reason of the algorithm being called as 0-1

knapsack. Unlike fractional knapsack, 0-1 knapsack does not follow greedy algorithm. As

the algorithm does not follow greedy approach and so optimal solution is never

guaranteed.

3.5.2.2.1 Pseudocode of 0-1 knapsack

element[],w[],cost[] //This are global array used in this algo

 Insertion_sort(item)

 for j=1 to item-1

 key1=cost.j

 key2=w.j

 key3=element.j

 i=j-1

 while i>=0 and cost.i<key1

 cost.i+1=cost.i

 w.i+1=w.i

 element.i+1=element.i

 i=i-1

 cost.i+1=key1

 w.i+1=key2

 element.i+1=key3

 Knapsack01_algo(item,sack)

 Insertion-sort(item)

 for i=0 to item-1

 if bag>=sack

 break

 elseif bag+w.i<=sack

39

 bag+=w.i

 total+=cost.i

 else

 y=i+1

 for ii=y to item-1

 if bag+w.ii<=sack

 bag+=w.ii

 total+=cost.ii

3.5.2.2. 2 How it works

 Figure 3.6: 0-1 Knapsack’s working process

In a knapsack problem every items are associated with their weight and cost. The goal is

to take the items within the sack’s capacity and to maximize the cost. In the first run the

problem can be solved using the properties of Greedy algorithm. As like fractional

knapsack idea, the items are sorted in decreasing order by the ratio of their cost per

weight. So the first item is the item having weight 10kg. 0-1 knapsack will take the item

and then check if the capacity is full. The algorithm then picks the second item with

weight 20kg and put it into the sack. After that, when it checks the sack capacity it is

found that the remaining capacity becomes 50-30=20kg and that the weight of the

third item exceeds that capacity. 0-1 Knapsack cannot take only a part of the third item.

40

So necessarily it will leave the third item and terminate the program. The final result

shows the cost $160 which is not optimal nor the maximum cost. Clearly 0-1 Knapsack

problem cannot be solved by following Greedy Algorithm.

Here comes the second run where 0-1 Knapsack problem is solved in other way where

the cost is maximized. The items are sorted in decreasing order by their cost. The item

having the highest cost is picked and inserted into the sack. If the sack capacity is not

filled, it then chooses the next item having second highest cost which is the item with cost

$100. If the item does not exceed the sack capacity it is inserted or else the algorithm

searches for next item that can be fit to the remaining capacity. As the given sack is filled

with first two items, the program will stop here. Here the final cost is $120+$100=$220.

This cost is clearly greater than the one solved by using Greedy algorithm.

 The algorithm is terminated when the sack capacity is full or there is no other item in the

list to fill the remaining capacity.

3.6 File compression done with Huffman Coding

 3.6.1 History

The history behind the invention of Huffman coding is very interesting. It was invented

by David Huffman in 1951. He submitted it as final term paper to his professor Robert

Fano who was having trouble in solving the problem similar to this.

 3.6.2 Algorithm

It reads characters from the file and calculates frequencies for each character. It prepares

leaf node for each character and puts it in priority queue. Then extracts each node,

combine their frequencies and again puts it in the priority queue. This process stops when

there is only one node. From this tree the compressed file size is calculated and compared

with the original size.

3.6.2.1 Pseudocode of Huffman coding

 a[],b[] //Global array

 before_insert()

 freopen("huff.txt","r",stdin)

 while c=getchar() !=EOF

41

 j=(int)c

 a.j=a.j+1

 ori_bit()

 i=cc

 j=ceil(log i/log 2)

 pp=(int)j

 del()

 if start!=NULL

 t=head

 head=head->NULL

 t->next=NULL

 return t

 summ(j)

 tt=tt+j

 printArray(ints,countt,lan)

 j=(countt-1)*ints.len-1

 summ(j)

 printPathsRecur(node,countt,path,pathLan)

 if node==NULL

 return

 path.pathLan=node->freq

 pathLan++

 countt++

 if node->left==NULL and node->right==NULL

 printArray(path,countt,pathLan)

 else

 printPathsRecur(node->left,countt,path,pathLan)

 printPathsRecur(node->right,countt,path,pathLan)

42

 printpaths(head)

 printPathsRecur(start,0,path,0)

 showchild(head)

 if temp==NULL

 return

 if temp->left!=NULL

 print(temp->name,temp->freq,temp->left->name,temp->left-

>freq,temp->right->name,temp->right->freq)

 else

 print(temp->name,temp->freq)

 showchild(temp->left)

 showchild(temp->right)

 main

head=NULL

 before_insert()

 for i=0 to 1000

 if a.i!=0

 b.0=(char)i

 j=a.i

 strncpy(z->name,b,1)

 z->freq=j

 z->next=NULL

 z->left=NULL

 z->right=NULL

 cc++

 insert(head,z)

 show()

 ori_bit()

 while(head->next!=NULL)

 p=del(head)

43

 q=del(head)

 strcpy(r->name,"-")

 r->freq=p->freq+q->freq

 r->next=NULL

 r->left=p

 r->right=q

 insert(head,r)

 final=head->freq

 j=pp*final

 printpaths(head) // tree teavarse and count the comressed number

if tt<j //tt=Compressed number

 print(compresed)

 o=final*8

 oo=((o-tt)/o)*100 //Percentahe compressed

 else

 print(not compresed)

 showchild(head)

44

3.6.2. 2Graphical representation and description

 Figure 3.7: Huffman working process

45

 Figure 3.8: Compression calculation of Huffman coding

3.6.2.3 Work Process:

a) Inserting characters:

The algorithm first reads a file and count different character’s frequencies which are

stored in an array. Iteratively the characters are inserted along with their frequencies in a

linked list in ascending order.

b) After insertion the numbers of all the new nodes are counted and converted into

how many bits they need to be represented. This is needed to compute the

compression size. For ‘engineering’ the algorithm has created 5 nodes. 5 is then

converted into bits by log5/log2 , takes the ceil value (3) and it is stored.

c) Creating child:

From the linked list, the first and second nodes are picked and their frequencies

are summed. So node ‘r’ and node ‘i’ are picked then inserted into a new node

with no name and summed frequency. Following that this new node has a left

child being the node ‘r’ and right being the node ‘i’. Then this new node is

inserted into the linked list. This process is continued until there is only one node

in the linked list.

d) Evaluating compression:

The root of the final tree structure has frequency of 11. This is multiplied by 3 and it is

stored. The result becomes 33 bit.

46

 Secondly the frequency of each character is multiplied by their length in the tree

structure. Here character ‘e’ with frequency 3 is multiplied by its length in the tree 2. This

is done for all the different characters and all their results are added. This result being 25

bit.

Clearly the file has been compressed from 33 to 25 bit. Percentage of compression is then

calculated which is 71.59% compressed.

47

Chapter 4

Experiment

4.1 Experimental Results

 4.1.1 Minimum Spanning Tree

We randomly generated undirected weighted graphs with various nodes and edges

then performed Prim’s and Kruskal’s Algorithm with these graphs. The results are

following.

Number of nodes PrimȭÓ !ÌÇÏÒÉÔÈÍ KruskalȭÓ !ÌÇÏÒÉÔÈÍ

100 0.016 0.187

300 0.046 0.296

500 0.068 0.374

700 0.078 0.436

900 0.084 0.546

1000 0.094 0.592

Table 4.1: Time complexity comparison between Prim’s and Kruskal’s

Algorithm

48

Figure 4.1: Time complexity comparison shown in graph between Prim’s and

Kruskal’s Algorithm

Results Found:

· Time complexity of both Prim’s Algorithm and Kruskal’s Algorithm is O(ElogV)

.

· Prim's algorithm works faster in really dense graph whereas Kruskal’s algorithm

performs better in typical sparse graphs.

49

 4.1.2 Single Source Shortest Path

Table 4.2: Time complexity comparison between Bellman-Ford and

Dijkstra’s Algorithm

Figure 4.2: Time complexity comparison shown in graph between

Bellman-Ford and Dijkstra’s Algorithm

50

Results Found:

· In one iteration Bellman-Ford Algorithm relaxes all edges simultaneously but

Dijkstra’s Algorithm being a greedy algorithm relaxes only the neighboring edges

from the particular vertex.

· Bellman-Ford Algorithm works for graphs having negative weights whereas

Dijkstra’s Algorithm cannot function in this kind of graphs.

· Bellman-Ford Algorithm can detect negative cycles, Dijkstra’s Algorithm doesn’t

have this feature.

· Bellman-Ford’s time complexity is higher which is O(VE), Dijkstra’s Algorithm’s

time complexity being O(ELogV).

4.2 Experiments with Different Instance

 4.2.1 Piggy bank problem solved with 0-1 Knapsack

 Problem:Suppose we have different types of coins. Those coins have specific

quantity and volume for example: the number of 5 taka coin is 20 and each coin’s volume

is 1.06. We have a given piggy bank that we have to fill with different type of coin and

the sum of the coins has to be maximum.

 Table 4.3: Problem instance for 0-1 knapsack

 4.2.1.1 Algorithm

Coin(item,sack)

 Insertion_sort(item)

 if i=0 to item-1

cc=quantity.i

if bag>=sack

 break

51

elseif bag+(quantity.i*volume.i)<=sack

 bag+=volume.i*quantity.i

 total+=cost.i*quantity.i

elseif bag+(quantity.i*volume.i)>sack

 for ss=0 to cc-1

quantity.i=quantity.i-1

 if bag+(quantity.i*volume.i)<=sack

bag+=volume.i*quantity.i

total+=cost.i*quantity.i

break

 4.2.1.1 Work Process

1. All the coins are sorted in descending order according to the costs of each coin.

2. First it checks if the numbers of coins taken exceeds the capacity of the piggy bank.

3. If not, it will take all the coins available and puts in the bank.

4. If the volume of the certain number of coins exceeds the volume of the bank, the

algorithm tries to take some of the coins.

5. The algorithm calculates total cost and numbers of each coin taken.

 4.2.2 Meal Problem solved with Fractional knapsack

Problem: Suppose we have number of food items and limited consumption

capacity. Our goal is to eat every given food item in a way that will maximize the calorie

consumed.

 Table 4.4: Problem instance for fractional knapsack

52

 4.2.2.1 Algorithm

Meal_algo(item,sack)

 for i=0 to item-1

unit.i=cost.i/w.i

 for i=0 to item-1

per.i=(w.i/weightsum)*sack

 Insertion-sort(item)

 for i=0 to item-1

if bag>=sack

 break

else

 bag+=per.i

 total+=per.i*unit.i

 amountsum+=per.i

 4.2.2.2 Work Process:

1. The meal items are sorted in descending order according to their cost per weight ratio.

2. In relevant to the consumer’s capacity, the maximum quantity of each item that the

consumer can eat has been calculated. So now all the items quantity will be within the

consumer’s capacity.

3. It then checks if the number of items taken exceeds the consumer’s capacity.

4. If not, it takes the whole item as calculated before because the items are already within

the consumer’s capacity.

5. The algorithm stops when the consumer’s capacity is reached.

4.3 Innovation

Solving MST with Greedy Approach and Genetic Algorithm

 4.3.1 Properties of Genetic Algorithm used

 The core properties:

¶ Initial population

¶ Fitness function

¶ Selection

¶ Crossover

¶ Mutation

53

Among these properties we used:

¶ Initial population

¶ Fitness function

¶ Mutation

1. Initial candidate

The weights of the given graph are sorted in descending order and stored in an array.

Basically this array is the initial candidate. In each iteration the arrangement of the array

is changed and thus new candidates are generated. All the different candidates produce

population in the problem.

2. Fitness function

Each candidate generates a spanning tree. The sum of all weights of edges in that

spanning tree is the fitness of that particular spanning tree. Every other candidates

generate different spanning tree thus all their fitness are calculated. As the goal is to

determine the minimum spanning tree, so the least fitness value is chosen with its

corresponding spanning tree.

3. Mutation

54

In every iteration one element of the initial candidate is changed by performing left

rotation operation. By doing so it creates a variation in the candidate pool. This allows to

create spanning tree of different fitness and creates large search space.

4. Termination

As the mutation happens by doing left rotation operation so when the algorithm has

performed iteration which is equal to the number of edges in the graph, the algorithm is

terminated and the solution is found.

 4.3.2Graphical Representation and Description:

(a) The original graph

55

(b) The algorithm first chooses first element from the initial candidate. It

eliminates the edge and checks if still the graph is connected. If the graph

becomes disconnected, the algorithm does not eliminate the edge.

(c) Then it chooses the next element from the candidate and checks the same.

(d) Here 8 is chosen but eliminating this edge will cause an island in the graph so

the algorithm doesn’t eliminate it. The process is continued until the last element

of the candidate is checked.

56

57

58

Figure 4.3: The spanning tree after first iteration

59

Figure 4.4: Left rotation to change the combination of initial candidate after first

iteration.

60

Chapter 5

Conclusion and Future Works

· Conclusion and current status

We studied some Greedy Algorithms such as Knapsack problem, Huffman

coding. We explored some area of graph theory such as MST, single

source shortest path. We tried to combine Greedy and Genetic Algorithm

to implement an algorithm that solved MST problem. Our current

implementation of GA takes longer time compared to any other

algorithms. Also, it is not matured enough to work with huge data set.

· Future works

In future we want to implement GA with all of its core properties to get

better result. We will make it work for large data set and solve problem

within reasonable time. We hope it will be efficient enough to work with

directed graph in the cases where Kruskal’s and Prim’s Algorithm might

have some limitations.

61

References

¶ Introduction to Algorithms book by Charles E. Leiserson, Clifford Stein,

Ronald Rivest, and Thomas H. Cormen

¶ https://en.wikipedia.org/wiki/Greedy_algorithm

¶ https://en.wikipedia.org/wiki/Genetic_algorithm

¶ www.geeksforgeeks.org

¶ stackoverflow.com

¶ www.quora.com

